-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinferences.py
123 lines (94 loc) · 3.79 KB
/
inferences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from tqdm import tqdm
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import torch
from build_model import *
from torch.utils.data import DataLoader
from data_loader import LungSegVal
from torchvision import transforms
import torch.nn.functional as F
import numpy as np
from skimage import morphology, color, io, exposure
def IoU(y_true, y_pred):
"""Returns Intersection over Union score for ground truth and predicted masks."""
assert y_true.dtype == bool and y_pred.dtype == bool
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = np.logical_and(y_true_f, y_pred_f).sum()
union = np.logical_or(y_true_f, y_pred_f).sum()
return (intersection + 1) * 1. / (union + 1)
def Dice(y_true, y_pred):
"""Returns Dice Similarity Coefficient for ground truth and predicted masks."""
assert y_true.dtype == bool and y_pred.dtype == bool
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = np.logical_and(y_true_f, y_pred_f).sum()
return (2. * intersection + 1.) / (y_true.sum() + y_pred.sum() + 1.)
def masked(img, gt, mask, alpha=1):
"""Returns image with GT lung field outlined with red, predicted lung field
filled with blue."""
rows, cols = img.shape[:2]
color_mask = np.zeros((rows, cols, 3))
boundary = morphology.dilation(gt, morphology.disk(3))^gt
color_mask[mask == 1] = [0, 0, 1]
color_mask[boundary == 1] = [1, 0, 0]
img_hsv = color.rgb2hsv(img)
color_mask_hsv = color.rgb2hsv(color_mask)
img_hsv[..., 0] = color_mask_hsv[..., 0]
img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha
img_masked = color.hsv2rgb(img_hsv)
return img_masked
def remove_small_regions(img, size):
"""Morphologically removes small (less than size) connected regions of 0s or 1s."""
img = morphology.remove_small_objects(img, size)
img = morphology.remove_small_holes(img, size)
return img
if __name__ == '__main__':
# Path to csv-file. File should contain X-ray filenames as first column,
# mask filenames as second column.
# Load test data
img_size = (864, 864)
inp_shape = (864,864,3)
batch_size=1
# Load model
#model_name = 'model.020.hdf5'
#UNet = load_model(model_name)
net = SegNet(3,1)
net.cuda()
net.load_state_dict(torch.load('Weights_BCE_Dice_InvDice/cp_bce_flip_lr_04_no_rot52_0.04634043872356415.pth.tar'))
net.eval()
seed = 1
transformations_test = transforms.Compose([transforms.Resize((864,864)),transforms.ToTensor()])
test_set = LungSegVal(transforms = transformations_test)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle = False)
ious = np.zeros(len(test_loader))
dices = np.zeros(len(test_loader))
if not(os.path.exists('./results_Unet_BCE_Dice_InvDice_test')):
os.mkdir('./results_Unet_BCE_Dice_InvDice_test')
i = 0
for xx, yy, name in tqdm(test_loader):
xx = xx.cuda()
yy = yy
name = name[0][:-4]
print (name)
pred = net(xx)
pred = F.sigmoid(pred)
pred = pred.cpu()
pred = pred.detach().numpy()[0,0,:,:]
mask = yy.numpy()[0,0,:,:]
xx = xx.cpu()
xx = xx.numpy()[0,:,:,:].transpose(1,2,0)
img = exposure.rescale_intensity(np.squeeze(xx), out_range=(0,1))
# Binarize masks
gt = mask > 0.5
pr = pred > 0.5
# Remove regions smaller than 2% of the image
#pr = remove_small_regions(pr, 0.02 * np.prod(img_size))
io.imsave('results_Unet_BCE_Dice_InvDice_test/{}.png'.format(name), pr*255)
ious[i] = IoU(gt, pr)
dices[i] = Dice(gt, pr)
i += 1
if i == len(test_loader):
break
print ('Mean IoU:', ious.mean())
print ('Mean Dice:', dices.mean())