-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathtrain.py
166 lines (112 loc) · 4.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import os
import sys
from datetime import datetime
sys.path.insert(0, os.path.abspath('.'))
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import colorful as cf
import numpy as np
import pandas as pd
from keras.callbacks import EarlyStopping, TensorBoard
from keras.layers import Activation, Dense, Flatten, Dropout
from keras.layers import Conv2D, MaxPooling2D
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator
import common
BATCH_SIZE = 128
MAX_EPOCHS = 240
PATIENCE = MAX_EPOCHS // 3
LOG_DIR = './logs/'
IMAGE_SHAPE = (common.INPUT_SHAPE[0], common.INPUT_SHAPE[1])
def main(batch_size, model_name):
common.create_directories()
show_settings(batch_size)
model = make_model()
training, validation = make_generators(batch_size)
fit(model, training, validation, batch_size)
save(model, model_name)
print("\nFinished!")
print("Run " + cf.skyBlue("classify.py") +
" to test the model and get information about its performance.")
print("More information available with " + cf.orange("Tensorboard") + ".")
def show_settings(batch_size):
print("Classification model training application started.\n")
settings = pd.DataFrame(index=('max_epochs', 'patience', 'batch_size'),
columns=('value', ))
settings['value']['max_epochs'] = MAX_EPOCHS
settings['value']['patience'] = PATIENCE
settings['value']['batch_size'] = batch_size
print(cf.skyBlue("Settings"))
print(settings)
def make_model():
print("\nCreating model...")
model = Sequential()
# Convolution block 1
model.add(Conv2D(32, (3, 3), padding='same', input_shape=common.INPUT_SHAPE))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Convolution block 2
model.add(Conv2D(48, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Convolution block 3
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(len(common.CLASSES), activation='softmax'))
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
def make_generators(batch_size):
print("\nCreating generators...")
aug = ImageDataGenerator(
width_shift_range=0.125, height_shift_range=0.125, zoom_range=0.2)
training = aug.flow_from_directory(
common.TRAINING_DIR,
target_size=IMAGE_SHAPE,
color_mode='grayscale',
batch_size=batch_size,
class_mode='categorical')
validation = aug.flow_from_directory(
common.VALIDATION_DIR,
target_size=IMAGE_SHAPE,
color_mode='grayscale',
batch_size=batch_size,
class_mode='categorical')
return training, validation
def fit(model, training, validation, batch_size):
print("\nFitting model...")
history = model.fit_generator(
training,
epochs=MAX_EPOCHS,
validation_data=validation,
steps_per_epoch=training.n // batch_size,
validation_steps=validation.n // batch_size,
callbacks=setup_callbacks(),
workers=2,
verbose=2)
best_epoch = np.argmin(history.history['val_loss']) + 1
print("\n" + cf.lightGreen("Best epoch: {}".format(best_epoch)))
def setup_callbacks():
log_dir = LOG_DIR + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = TensorBoard(log_dir=log_dir)
early_stopping = EarlyStopping(patience=PATIENCE, verbose=1, restore_best_weights=True)
return [tensorboard_callback, early_stopping]
def save(model, model_name):
print("\nSaving model...")
path = common.MODEL_DIR + model_name
model.save(path)
print("Model saved to " + cf.skyBlue(path))
if __name__ == "__main__":
os.system('color')
parser = argparse.ArgumentParser()
parser.add_argument('-b', '--batch_size', type=int, default=BATCH_SIZE,
help="Specifies the batch size")
parser.add_argument('-m', '--model', type=str, default="arrow_model.h5",
help="Specifies the output model name")
args = parser.parse_args()
main(args.batch_size, args.model)