-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_monk.py
43 lines (28 loc) · 1.38 KB
/
main_monk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from NeuralNetwork import NeuralNetwork
from datasets.monk.MonkDataSource import MonkDataSouce
if __name__ == '__main__':
dataset_name = "monks-1"
# dataset_name = "monks-2"
# dataset_name = "monks-3"
# dataset_name = "monks-3-reg"
if dataset_name == "monks-1":
hyperparams = MonkDataSouce.get_monk_1_hyperparam()
elif dataset_name == "monks-2":
hyperparams = MonkDataSouce.get_monk_2_hyperparam()
elif dataset_name == "monks-3":
hyperparams = MonkDataSouce.get_monk_3_hyperparam()
elif dataset_name == "monks-3-reg":
hyperparams = MonkDataSouce.get_monk_3_reg_hyperparam()
if dataset_name.startswith("monks-3"):
dataset_name = "monks-3"
dataset = MonkDataSouce(namefile_train="./datasets/monk/" + dataset_name + ".train",
namefile_test="./datasets/monk/"+dataset_name+".test")
input, target = dataset.getOriginalTrainingDataset()
input_TS, target_TS = dataset.getTestSet()
nn = NeuralNetwork(hyperparams, log=True, forceMetrics=True, task="classification")
nn.train(input, target, input_TS, target_TS)
print("TR error: ", nn.estimate_error(input, target))
print("TS error:", nn.estimate_error(input_TS, target_TS))
print("TR accuracy:", nn.get_accuracy(input, target))
print("TS accuracy:", nn.get_accuracy(input_TS, target_TS))
nn.plot()