-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobj.sun.js
256 lines (235 loc) · 8.61 KB
/
obj.sun.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
const Sun = (function () {
'use strict';
var PI = Math.PI,
sin = Math.sin,
cos = Math.cos,
tan = Math.tan,
asin = Math.asin,
atan = Math.atan2,
acos = Math.acos,
rad = PI / 180;
var dayMs = 1000 * 60 * 60 * 24,
J1970 = 2440588,
J2000 = 2451545;
function toJulian(date) {
return date.valueOf() / dayMs - 0.5 + J1970;
}
function fromJulian(j) {
return new Date((j + 0.5 - J1970) * dayMs);
}
function toDays(date) {
return toJulian(date) - J2000;
}
var e = rad * 23.4397; // obliquity of the Earth
function rightAscension(l, b) {
return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l));
}
function declination(l, b) {
return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l));
}
function azimuth(H, phi, dec) {
return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi));
}
function altitude(H, phi, dec) {
return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H));
}
function siderealTime(d, lw) {
return rad * (280.16 + 360.9856235 * d) - lw;
}
function astroRefraction(h) {
if (h < 0)
h = 0;
return 0.0002967 / Math.tan(h + 0.00312536 / (h + 0.08901179));
}
function solarMeanAnomaly(d) {
return rad * (357.5291 + 0.98560028 * d);
}
function eclipticLongitude(M) {
var C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)), P = rad * 102.9372;
return M + C + P + PI;
}
function sunCoords(d) {
var M = solarMeanAnomaly(d),
L = eclipticLongitude(M);
return {
dec: declination(L, 0),
ra: rightAscension(L, 0)
};
}
var sun = {};
sun.getPosition = function (date, lat, lng) {
var lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
c = sunCoords(d),
H = siderealTime(d, lw) - c.ra;
return {
azimuth: azimuth(H, phi, c.dec),
altitude: altitude(H, phi, c.dec)
};
};
var times = sun.times = [
[-0.833, 'sunrise', 'sunset'],
[-0.3, 'sunriseEnd', 'sunsetStart'],
[-6, 'dawn', 'dusk'],
[-12, 'nauticalDawn', 'nauticalDusk'],
[-18, 'nightEnd', 'night'],
[6, 'goldenHourEnd', 'goldenHour']
];
sun.addTime = function (angle, riseName, setName) {
times.push([angle, riseName, setName]);
};
var J0 = 0.0009;
function julianCycle(d, lw) {
return Math.round(d - J0 - lw / (2 * PI));
}
function approxTransit(Ht, lw, n) {
return J0 + (Ht + lw) / (2 * PI) + n;
}
function solarTransitJ(ds, M, L) {
return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L);
}
function hourAngle(h, phi, d) {
return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d)));
}
function getSetJ(h, lw, phi, dec, n, M, L) {
var w = hourAngle(h, phi, dec),
a = approxTransit(w, lw, n);
return solarTransitJ(a, M, L);
}
sun.get = function (date, lat, lng) {
var lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
n = julianCycle(d, lw),
ds = approxTransit(0, lw, n),
M = solarMeanAnomaly(ds),
L = eclipticLongitude(M),
dec = declination(L, 0),
Jnoon = solarTransitJ(ds, M, L),
i, len, time, Jset, Jrise;
var result = {
solarNoon: fromJulian(Jnoon),
nadir: fromJulian(Jnoon - 0.5)
};
for (i = 0, len = times.length; i < len; i += 1) {
time = times[i];
Jset = getSetJ(time[0] * rad, lw, phi, dec, n, M, L);
Jrise = Jnoon - (Jset - Jnoon);
result[time[1]] = fromJulian(Jrise);
result[time[2]] = fromJulian(Jset);
}
return result;
};
sun.today = function (lat, lng) {
var now = new Date();
var yesterday = new Date().setDate(now.getDate() - 1);
var tomorrow = new Date().setDate(now.getDate() + 1);
var Now = this.get(now, lat, lng);
var Yesterday = this.get(yesterday, lat, lng);
var Tomorrow = this.get(tomorrow, lat, lng);
Now.prevSunset = Yesterday.sunset;
Now.nextSunrise = Tomorrow.sunrise;
return Now;
};
function moonCoords(d) { // geocentric ecliptic coordinates of the moon
var L = rad * (218.316 + 13.176396 * d), // ecliptic longitude
M = rad * (134.963 + 13.064993 * d), // mean anomaly
F = rad * (93.272 + 13.229350 * d), // mean distance
l = L + rad * 6.289 * sin(M), // longitude
b = rad * 5.128 * sin(F), // latitude
dt = 385001 - 20905 * cos(M); // distance to the moon in km
return {
ra: rightAscension(l, b),
dec: declination(l, b),
dist: dt
};
}
sun.getMoonPosition = function (date, lat, lng) {
var lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
c = moonCoords(d),
H = siderealTime(d, lw) - c.ra,
h = altitude(H, phi, c.dec),
// formula 14.1 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
pa = atan(sin(H), tan(phi) * cos(c.dec) - sin(c.dec) * cos(H));
h = h + astroRefraction(h); // altitude correction for refraction
return {
azimuth: azimuth(H, phi, c.dec),
altitude: h,
distance: c.dist,
parallacticAngle: pa
};
};
sun.getMoonIllumination = function (date) {
var d = toDays(date || new Date()),
s = sunCoords(d),
m = moonCoords(d),
sdist = 149598000, // distance from Earth to Sun in km
phi = acos(sin(s.dec) * sin(m.dec) + cos(s.dec) * cos(m.dec) * cos(s.ra - m.ra)),
inc = atan(sdist * sin(phi), m.dist - sdist * cos(phi)),
angle = atan(cos(s.dec) * sin(s.ra - m.ra), sin(s.dec) * cos(m.dec) -
cos(s.dec) * sin(m.dec) * cos(s.ra - m.ra));
return {
fraction: (1 + cos(inc)) / 2,
phase: 0.5 + 0.5 * inc * (angle < 0 ? -1 : 1) / Math.PI,
angle: angle
};
};
function hoursLater(date, h) {
return new Date(date.valueOf() + h * dayMs / 24);
}
sun.getMoonTimes = function (date, lat, lng, inUTC) {
var t = new Date(date);
if (inUTC)
t.setUTCHours(0, 0, 0, 0);
else
t.setHours(0, 0, 0, 0);
var hc = 0.133 * rad,
h0 = sun.getMoonPosition(t, lat, lng).altitude - hc,
h1, h2, rise, set, a, b, xe, ye, d, roots, x1, x2, dx;
for (var i = 1; i <= 24; i += 2) {
h1 = sun.getMoonPosition(hoursLater(t, i), lat, lng).altitude - hc;
h2 = sun.getMoonPosition(hoursLater(t, i + 1), lat, lng).altitude - hc;
a = (h0 + h2) / 2 - h1;
b = (h2 - h0) / 2;
xe = -b / (2 * a);
ye = (a * xe + b) * xe + h1;
d = b * b - 4 * a * h1;
roots = 0;
if (d >= 0) {
dx = Math.sqrt(d) / (Math.abs(a) * 2);
x1 = xe - dx;
x2 = xe + dx;
if (Math.abs(x1) <= 1)
roots++;
if (Math.abs(x2) <= 1)
roots++;
if (x1 < -1)
x1 = x2;
}
if (roots === 1) {
if (h0 < 0)
rise = i + x1;
else
set = i + x1;
} else if (roots === 2) {
rise = i + (ye < 0 ? x2 : x1);
set = i + (ye < 0 ? x1 : x2);
}
if (rise && set)
break;
h0 = h2;
}
var result = {};
if (rise)
result.rise = hoursLater(t, rise);
if (set)
result.set = hoursLater(t, set);
if (!rise && !set)
result[ye > 0 ? 'alwaysUp' : 'alwaysDown'] = true;
return result;
};
return sun;
})();