forked from PlasmaControl/keras2c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFRNN_0D_12channels_mar6_10_test_suite.c
161 lines (152 loc) · 7.96 KB
/
FRNN_0D_12channels_mar6_10_test_suite.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include <stdio.h>
#include <math.h>
#include <time.h>
#include "./include/k2c_include.h"
#include "FRNN_0D_12channels_mar6_10.h"
float maxabs(k2c_tensor *tensor1, k2c_tensor *tensor2);
struct timeval GetTimeStamp();
int main(){
float test1_input_1_input_array[12] = {
9.74862143e-01,-1.91462881e+00,1.19438180e+00,2.09435737e-01,-6.75272555e-01,
1.50233544e+00,8.24880554e-01,1.46630742e+00,1.63151496e-01,2.35036952e-01,
1.12326157e-01,-1.26254398e+00,};
k2c_tensor test1_input_1_input = {&test1_input_1_input_array[0],2,12,{ 1,12, 1, 1, 1}};
float keras_dense_1_test1_array[1] = {
-7.93890506e-02,};
k2c_tensor keras_dense_1_test1 = {&keras_dense_1_test1_array[0],2,1,{1,1,1,1,1}};
float c_dense_1_test1_array[1] = {0};
k2c_tensor c_dense_1_test1 = {&c_dense_1_test1_array[0],2,1,{1,1,1,1,1}};
float test2_input_1_input_array[12] = {
1.67485047e-01,8.48544989e-01,-6.07696472e-01,-1.17347975e+00,5.73826654e-01,
-2.36931406e-01,-6.88295208e-01,-1.25897250e+00,-1.90720874e+00,1.05951661e+00,
2.59600861e-01,-5.26925179e-01,};
k2c_tensor test2_input_1_input = {&test2_input_1_input_array[0],2,12,{ 1,12, 1, 1, 1}};
float keras_dense_1_test2_array[1] = {
-1.97735220e-01,};
k2c_tensor keras_dense_1_test2 = {&keras_dense_1_test2_array[0],2,1,{1,1,1,1,1}};
float c_dense_1_test2_array[1] = {0};
k2c_tensor c_dense_1_test2 = {&c_dense_1_test2_array[0],2,1,{1,1,1,1,1}};
float test3_input_1_input_array[12] = {
1.19815857e+00,-1.60728389e+00,-2.46010576e-01,6.01036030e-01,2.81784337e-01,
1.44422444e+00,-1.76162256e+00,1.07801221e+00,1.35514943e+00,-1.37178163e+00,
1.28795770e+00,-1.74621977e+00,};
k2c_tensor test3_input_1_input = {&test3_input_1_input_array[0],2,12,{ 1,12, 1, 1, 1}};
float keras_dense_1_test3_array[1] = {
-2.87544549e-01,};
k2c_tensor keras_dense_1_test3 = {&keras_dense_1_test3_array[0],2,1,{1,1,1,1,1}};
float c_dense_1_test3_array[1] = {0};
k2c_tensor c_dense_1_test3 = {&c_dense_1_test3_array[0],2,1,{1,1,1,1,1}};
float test4_input_1_input_array[12] = {
1.49842295e+00,1.73795210e+00,1.99187876e+00,1.82178010e-01,-5.22233086e-02,
-1.26282192e+00,-1.89682953e+00,1.61828528e+00,-3.20224503e-01,-8.23185882e-01,
-8.63794447e-01,-1.48654695e+00,};
k2c_tensor test4_input_1_input = {&test4_input_1_input_array[0],2,12,{ 1,12, 1, 1, 1}};
float keras_dense_1_test4_array[1] = {
-1.13669172e-01,};
k2c_tensor keras_dense_1_test4 = {&keras_dense_1_test4_array[0],2,1,{1,1,1,1,1}};
float c_dense_1_test4_array[1] = {0};
k2c_tensor c_dense_1_test4 = {&c_dense_1_test4_array[0],2,1,{1,1,1,1,1}};
float test5_input_1_input_array[12] = {
-1.14102234e+00,1.53789698e+00,4.99092557e-01,1.85757698e+00,-1.88779875e+00,
-1.36940737e+00,-2.16363102e-01,-9.44432274e-01,1.78556774e+00,-1.96383502e+00,
1.43933429e+00,3.01756748e-01,};
k2c_tensor test5_input_1_input = {&test5_input_1_input_array[0],2,12,{ 1,12, 1, 1, 1}};
float keras_dense_1_test5_array[1] = {
1.52665615e-01,};
k2c_tensor keras_dense_1_test5 = {&keras_dense_1_test5_array[0],2,1,{1,1,1,1,1}};
float c_dense_1_test5_array[1] = {0};
k2c_tensor c_dense_1_test5 = {&c_dense_1_test5_array[0],2,1,{1,1,1,1,1}};
float test6_input_1_input_array[12] = {
7.24345900e-01,1.85829509e+00,-1.53630551e+00,1.87206538e+00,1.70573056e+00,
-2.18009096e-01,-9.92505330e-01,-1.50946896e+00,5.42160033e-01,1.07828073e-01,
-1.69386977e+00,-1.35278798e+00,};
k2c_tensor test6_input_1_input = {&test6_input_1_input_array[0],2,12,{ 1,12, 1, 1, 1}};
float keras_dense_1_test6_array[1] = {
-1.57441199e-01,};
k2c_tensor keras_dense_1_test6 = {&keras_dense_1_test6_array[0],2,1,{1,1,1,1,1}};
float c_dense_1_test6_array[1] = {0};
k2c_tensor c_dense_1_test6 = {&c_dense_1_test6_array[0],2,1,{1,1,1,1,1}};
float test7_input_1_input_array[12] = {
-5.22326147e-01,-1.38296827e+00,3.73982059e-01,-7.32949667e-03,8.70968804e-02,
6.26404247e-01,-1.17132513e+00,1.84161235e+00,3.70983455e-01,1.29183859e+00,
1.84307904e+00,-3.65388995e-01,};
k2c_tensor test7_input_1_input = {&test7_input_1_input_array[0],2,12,{ 1,12, 1, 1, 1}};
float keras_dense_1_test7_array[1] = {
-1.20771289e-01,};
k2c_tensor keras_dense_1_test7 = {&keras_dense_1_test7_array[0],2,1,{1,1,1,1,1}};
float c_dense_1_test7_array[1] = {0};
k2c_tensor c_dense_1_test7 = {&c_dense_1_test7_array[0],2,1,{1,1,1,1,1}};
float test8_input_1_input_array[12] = {
3.54423302e-01,8.35756521e-01,9.30568293e-01,-8.80070163e-01,4.60420987e-01,
-7.12152416e-01,3.87322182e-01,1.75194096e+00,-1.62142727e+00,-1.81252501e-01,
-1.71089578e+00,-1.10667283e+00,};
k2c_tensor test8_input_1_input = {&test8_input_1_input_array[0],2,12,{ 1,12, 1, 1, 1}};
float keras_dense_1_test8_array[1] = {
1.67335290e-02,};
k2c_tensor keras_dense_1_test8 = {&keras_dense_1_test8_array[0],2,1,{1,1,1,1,1}};
float c_dense_1_test8_array[1] = {0};
k2c_tensor c_dense_1_test8 = {&c_dense_1_test8_array[0],2,1,{1,1,1,1,1}};
float test9_input_1_input_array[12] = {
1.93365477e+00,-1.89361498e+00,7.29155899e-01,9.86636799e-01,1.48788221e+00,
1.60681784e+00,-1.51272083e+00,-3.63667128e-01,-1.79188316e+00,1.16938858e+00,
-3.02039088e-02,6.46979680e-01,};
k2c_tensor test9_input_1_input = {&test9_input_1_input_array[0],2,12,{ 1,12, 1, 1, 1}};
float keras_dense_1_test9_array[1] = {
-1.95377767e-01,};
k2c_tensor keras_dense_1_test9 = {&keras_dense_1_test9_array[0],2,1,{1,1,1,1,1}};
float c_dense_1_test9_array[1] = {0};
k2c_tensor c_dense_1_test9 = {&c_dense_1_test9_array[0],2,1,{1,1,1,1,1}};
float test10_input_1_input_array[12] = {
1.84938811e+00,-4.70047699e-01,1.05411379e-01,-2.58339993e-01,-8.17002125e-01,
-9.64740223e-01,-1.44334787e+00,1.15053539e+00,-1.23542903e+00,-1.86164629e+00,
6.89641473e-01,1.88291207e+00,};
k2c_tensor test10_input_1_input = {&test10_input_1_input_array[0],2,12,{ 1,12, 1, 1, 1}};
float keras_dense_1_test10_array[1] = {
-9.86666679e-02,};
k2c_tensor keras_dense_1_test10 = {&keras_dense_1_test10_array[0],2,1,{1,1,1,1,1}};
float c_dense_1_test10_array[1] = {0};
k2c_tensor c_dense_1_test10 = {&c_dense_1_test10_array[0],2,1,{1,1,1,1,1}};
float errors[10];
size_t num_tests = 10;
size_t num_outputs = 1;
FRNN_0D_12channels_mar6_10_initialize();
FRNN_0D_12channels_mar6_10_reset_states();clock_t t0 = clock();
FRNN_0D_12channels_mar6_10(&test1_input_1_input,&c_dense_1_test1);
FRNN_0D_12channels_mar6_10(&test2_input_1_input,&c_dense_1_test2);
FRNN_0D_12channels_mar6_10(&test3_input_1_input,&c_dense_1_test3);
FRNN_0D_12channels_mar6_10(&test4_input_1_input,&c_dense_1_test4);
FRNN_0D_12channels_mar6_10(&test5_input_1_input,&c_dense_1_test5);
FRNN_0D_12channels_mar6_10_reset_states();FRNN_0D_12channels_mar6_10(&test6_input_1_input,&c_dense_1_test6);
FRNN_0D_12channels_mar6_10(&test7_input_1_input,&c_dense_1_test7);
FRNN_0D_12channels_mar6_10(&test8_input_1_input,&c_dense_1_test8);
FRNN_0D_12channels_mar6_10(&test9_input_1_input,&c_dense_1_test9);
FRNN_0D_12channels_mar6_10(&test10_input_1_input,&c_dense_1_test10);
clock_t t1 = clock();
printf("Average time over 10 tests: %e s \n",(double)(t1-t0)/(double)CLOCKS_PER_SEC/(double)10);
errors[0] = maxabs(&keras_dense_1_test1,&c_dense_1_test1);
errors[1] = maxabs(&keras_dense_1_test2,&c_dense_1_test2);
errors[2] = maxabs(&keras_dense_1_test3,&c_dense_1_test3);
errors[3] = maxabs(&keras_dense_1_test4,&c_dense_1_test4);
errors[4] = maxabs(&keras_dense_1_test5,&c_dense_1_test5);
errors[5] = maxabs(&keras_dense_1_test6,&c_dense_1_test6);
errors[6] = maxabs(&keras_dense_1_test7,&c_dense_1_test7);
errors[7] = maxabs(&keras_dense_1_test8,&c_dense_1_test8);
errors[8] = maxabs(&keras_dense_1_test9,&c_dense_1_test9);
errors[9] = maxabs(&keras_dense_1_test10,&c_dense_1_test10);
float maxerror = errors[0];
for(size_t i=1; i< num_tests*num_outputs;i++){
if (errors[i] > maxerror) {
maxerror = errors[i];}}
printf("Max absolute error for 10 tests: %e \n", maxerror);
FRNN_0D_12channels_mar6_10_terminate();
if (maxerror > 1e-05) {
return 1;}
return 0;
}
float maxabs(k2c_tensor *tensor1, k2c_tensor *tensor2){
float x = 0;
float y = 0;
for(size_t i=0; i<tensor1->numel; i++){
y = fabs(tensor1->array[i]-tensor2->array[i]);
if (y>x) {x=y;}}
return x;}