-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathnormalization.py
83 lines (74 loc) · 2.5 KB
/
normalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
import scipy.sparse as sp
import torch
def fetch_normalization(type, **kwargs):
switcher = {
'AugNormAdj': aug_normalized_adjacency,
'RwNorm': rw_normalized_adjacency,
'InvLap': lambda adj: inv_normalized_laplacian(adj, **kwargs),
'CombLap': comb_laplacian,
'SymNormLap': sym_normalized_laplacian,
'AbsRwNormAdj': abs_rw_normalized_adjacency
}
func = switcher.get(type, lambda x: x)
return func
def aug_normalized_adjacency(adj):
adj = adj + sp.eye(adj.shape[0])
adj = sp.coo_matrix(adj)
row_sum = np.array(adj.sum(1))
d_inv_sqrt = np.power(row_sum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return d_mat_inv_sqrt.dot(adj).dot(d_mat_inv_sqrt).tocoo()
def abs_rw_normalized_adjacency(adj):
adj = adj + sp.eye(adj.shape[0])
adj = sp.coo_matrix(adj)
row_sum = np.array(adj.sum(1))
d_inv = np.power(row_sum, -1).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat_inv = sp.diags(d_inv)
return np.abs(d_mat_inv.dot(adj).tocoo())
def rw_normalized_adjacency(adj):
adj = adj + sp.eye(adj.shape[0])
adj = sp.coo_matrix(adj)
row_sum = np.array(adj.sum(1))
d_inv = np.power(row_sum, -1).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat_inv = sp.diags(d_inv)
return d_mat_inv.dot(adj).tocoo()
def sym_normalized_laplacian(adj):
adj = sp.coo_matrix(adj)
row_sum = np.array(adj.sum(1))
d_mat = sp.diags(row_sum.flatten())
L = d_mat - adj
d_inv = np.power(row_sum, -1/2).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat_inv = sp.diags(d_inv)
return d_mat_inv.dot(L).dot(d_mat_inv).tocoo()
def inv_normalized_laplacian(adj, alpha=0.8):
adj = sp.coo_matrix(adj)
row_sum = np.array(adj.sum(1))
d_mat = sp.diags(row_sum.flatten())
L = d_mat - adj
d_inv = np.power(row_sum, -0.5).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat_inv = sp.diags(d_inv)
term = alpha * (sp.eye(adj.shape[0]) - d_mat_inv.dot(L).dot(d_mat_inv).tocoo())
return term.dot(term)
def comb_laplacian(adj, scale=False):
row_sum = np.array(adj.sum(1))
d = sp.diags(row_sum.flatten())
L = (d - adj).todense()
if scale:
max_eigval = np.max(np.linalg.eigvals(L))
L = L / max_eigval
L = sp.coo_matrix(L)
return L
def row_normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx