-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval.py
298 lines (229 loc) · 10.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import getpass
import argparse
import logging
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from Datasets.lip import LIP
from Net.pspnet import PSPNet
models = {
'squeezenet': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='squeezenet'),
'densenet': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=1024, deep_features_size=512, backend='densenet'),
'resnet18': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='resnet18'),
'resnet34': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='resnet34'),
'resnet50': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet50'),
'resnet101': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet101'),
'resnet152': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet152')
}
def parse_arguments():
parser = argparse.ArgumentParser(description='Human Parsing')
# Add more arguments based on requirements later
parser.add_argument('-d', '--data-path', help='Set path of dataset', default='.', type=str)
parser.add_argument('-n', '--num-class', help='Set number of segmentation classes', default=20, type=int)
parser.add_argument('-be', '--backend', help='Set Feature extractor', default='densenet', type=str)
parser.add_argument('-s', '--snapshot', help='Set path to pre-trained weights', default=None, type=str)
parser.add_argument('-g', '--gpu', help='Set gpu [True / False]', default=False, action='store_true')
parser.add_argument('-m', '--models-path', type=str, default='./checkpoints', help='Path for storing model snapshots')
parser.add_argument('-v', '--visualize', action='store_true', help="Display output and ground truth.")
parser.add_argument('-b', '--batch-size', help='Set size of the batch', default=32, type=int)
# Mutually Exclusive Group 1 (Train / Eval)
train_eval_parser = parser.add_mutually_exclusive_group(required=False)
train_eval_parser.add_argument('-t', '--train', dest='train', help='Set to train mode', action='store_true')
train_eval_parser.add_argument('-ev', '--eval', dest='train', help='Set to eval mode', action='store_false')
parser.set_defaults(train=False)
args = parser.parse_args()
return args
def build_network(snapshot, backend, gpu):
epoch = 0
backend = backend.lower()
net = models[backend]()
net = nn.DataParallel(net)
if snapshot is not None:
_, epoch = os.path.basename(snapshot).split('_')
if epoch != 'last':
epoch = int(epoch)
if gpu:
net.load_state_dict(torch.load(snapshot))
else:
net.load_state_dict(torch.load(snapshot, map_location=torch.device('cpu')))
logging.info("Snapshot for epoch {} loaded from {}".format(epoch, snapshot))
if gpu:
net = net.cuda()
return net, epoch
def get_transform():
transform_image_list = [
transforms.Resize((256, 256), 3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
transform_gt_list = [
transforms.Resize((256, 256), 0),
transforms.Lambda(lambda img: np.asarray(img, dtype=np.uint8)),
]
data_transforms = {
'img': transforms.Compose(transform_image_list),
'gt': transforms.Compose(transform_gt_list),
}
return data_transforms
def show_image(img, pred, gt):
fig, axes = plt.subplots(1, 3)
ax0, ax1, ax2 = axes
ax0.get_xaxis().set_ticks([])
ax0.get_yaxis().set_ticks([])
ax1.get_xaxis().set_ticks([])
ax1.get_yaxis().set_ticks([])
ax2.get_xaxis().set_ticks([])
ax2.get_yaxis().set_ticks([])
classes = np.array(('Background', # always index 0
'Hat', 'Hair', 'Glove', 'Sunglasses',
'UpperClothes', 'Dress', 'Coat', 'Socks',
'Pants', 'Jumpsuits', 'Scarf', 'Skirt',
'Face', 'Left-arm', 'Right-arm', 'Left-leg',
'Right-leg', 'Left-shoe', 'Right-shoe', ))
colormap = [(0,0,0),
(1,0.25,0), (0,0.25,0), (0.5,0,0.25), (1,1,1),
(1,0.75,0), (0,0,0.5), (0.5,0.25,0), (0.75,0,0.25),
(1,0,0.25), (0,0.5,0), (0.5,0.5,0), (0.25,0,0.5),
(1,0,0.75), (0,0.5,0.5), (0.25,0.5,0.5), (1,0,0),
(1,0.25,0), (0,0.75,0), (0.5,0.75,0), ]
cmap = matplotlib.colors.ListedColormap(colormap)
bounds=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)
h, w, _ = pred.shape
def denormalize(img, mean, std):
c, _, _ = img.shape
for idx in range(c):
img[idx, :, :] = img[idx, :, :] * std[idx] + mean[idx]
return img
img = denormalize(img[0].numpy(), [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
img = img.transpose(1,2,0).reshape((h,w,3))
pred = pred.reshape((h,w))
gt = gt.reshape((h, w))
# show image
ax0.set_title('img')
ax0.imshow(img)
ax1.set_title('pred')
mappable = ax1.imshow(pred, cmap=cmap, norm=norm)
ax2.set_title('gt')
mappable = ax2.imshow(gt, cmap=cmap, norm=norm)
# colorbar legend
cbar = plt.colorbar(mappable, ax=axes, shrink=0.7,) # orientation='horizontal'
cbar.ax.get_yaxis().set_ticks([])
for j, lab in enumerate(classes):
cbar.ax.text(1.3, (j+0.45) / 20.0, lab, ha='left', va='center',) # fontsize=7
# cbar.ax.get_yaxis().labelpad = 5
plt.show()
def get_pixel_acc(pred, gt):
valid = (gt >= 0)
acc_sum = (valid * (pred == gt)).sum()
valid_sum = valid.sum()
acc = float(acc_sum) / (valid_sum + 1e-10)
return acc
def get_mean_acc(pred, gt, numClass):
imPred = pred.copy()
imLabel = gt.copy()
imPred += 1
imLabel += 1
imPred = imPred * (imLabel > 0)
# Compute area intersection:
intersection = imPred * (imPred == imLabel)
(area_intersection, _) = np.histogram(
intersection, bins=numClass, range=(1, numClass))
# Compute area label:
(area_label, _) = np.histogram(imLabel, bins=numClass, range=(1, numClass))
# Remove classes from unlabeled pixels in gt image.
# We should not penalize detections in unlabeled portions of the image.
valid = area_label > 0
# Compute intersection over union:
classes_acc = area_intersection / (area_label + 1e-10)
mean_acc = np.average(classes_acc, weights=valid)
return mean_acc
def get_mean_IoU(pred, gt, numClass):
imPred = pred.copy()
imLabel = gt.copy()
imPred += 1
imLabel += 1
imPred = imPred * (imLabel > 0)
# Compute area intersection:
intersection = imPred * (imPred == imLabel)
(area_intersection, _) = np.histogram(
intersection, bins=numClass, range=(1, numClass))
# Compute area union:
(area_pred, _) = np.histogram(imPred, bins=numClass, range=(1, numClass))
(area_label, _) = np.histogram(imLabel, bins=numClass, range=(1, numClass))
area_union = area_pred + area_label - area_intersection
# Remove classes from unlabeled pixels in gt image.
# We should not penalize detections in unlabeled portions of the image.
valid = area_label > 0
# Compute intersection over union:
IoU = area_intersection / (area_union + 1e-10)
mean_IoU = np.average(IoU, weights=valid)
return mean_IoU
def get_mean_acc_and_IoU(pred, gt, numClass):
imPred = pred.copy()
imLabel = gt.copy()
imPred += 1
imLabel += 1
imPred = imPred * (imLabel > 0)
# Compute area intersection:
intersection = imPred * (imPred == imLabel)
(area_intersection, _) = np.histogram(
intersection, bins=numClass, range=(1, numClass))
# Compute area union:
(area_pred, _) = np.histogram(imPred, bins=numClass, range=(1, numClass))
(area_label, _) = np.histogram(imLabel, bins=numClass, range=(1, numClass))
area_union = area_pred + area_label - area_intersection
# Remove classes from unlabeled pixels in gt image.
# We should not penalize detections in unlabeled portions of the image.
valid = area_label > 0
# Compute mean acc.
classes_acc = area_intersection / (area_label + 1e-10)
mean_acc = np.average(classes_acc, weights=valid)
# Compute intersection over union:
IoU = area_intersection / (area_union + 1e-10)
mean_IoU = np.average(IoU, weights=valid)
return mean_acc, mean_IoU
def get_dataloader(datapath, train=False, batch_size=1, shuffle=False, num_class=20):
return DataLoader(
LIP(
args.data_path,
train=args.train,
transform=get_transform(),
),
batch_size=args.batch_size,
shuffle=shuffle,
)
if __name__ == '__main__':
args = parse_arguments()
snapshot = os.path.join(args.models_path, args.backend, 'PSPNet_last')
net, starting_epoch = build_network(snapshot, args.backend, args.gpu)
net.eval()
val_loader = get_dataloader(args.data_path, train=args.train, batch_size=args.batch_size, num_class=args.num_class)
overall_acc_list = []
mean_acc_list = []
mean_IoU_list = []
with torch.no_grad():
for index, (img, gt) in enumerate(val_loader):
if args.gpu:
pred_seg, pred_cls = net(img.cuda())
else:
pred_seg, pred_cls = net(img)
pred_seg = pred_seg[0]
pred = pred_seg.cpu().numpy().transpose(1, 2, 0)
pred = np.asarray(np.argmax(pred, axis=2), dtype=np.uint8).reshape((256, 256, 1))
gt = np.asarray(gt.numpy(), dtype=np.uint8).transpose(1, 2, 0)
if args.visualize:
show_image(img, pred, gt)
overall_acc_list.append(get_pixel_acc(pred, gt))
_mean_acc, _mean_IoU = get_mean_acc_and_IoU(pred, gt, args.num_class)
mean_acc_list.append(_mean_acc)
mean_IoU_list.append(_mean_IoU)
print(' %d / %d ' % (index, len(val_loader)))
print(' overall acc. : %f ' % (np.mean(overall_acc_list)))
print(' mean acc. : %f ' % (np.mean(mean_acc_list)))
print(' mean IoU : %f ' % (np.mean(mean_IoU_list)))