-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path209.minimum-size-subarray-sum.py
81 lines (71 loc) · 2.12 KB
/
209.minimum-size-subarray-sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Tag: Array, Binary Search, Sliding Window, Prefix Sum
# Time: O(N)
# Space: O(1)
# Ref: -
# Note: -
# Given an array of positive integers nums and a positive integer target, return the minimal length of a subarray whose sum is greater than or equal to target. If there is no such subarray, return 0 instead.
#
# Example 1:
#
# Input: target = 7, nums = [2,3,1,2,4,3]
# Output: 2
# Explanation: The subarray [4,3] has the minimal length under the problem constraint.
#
# Example 2:
#
# Input: target = 4, nums = [1,4,4]
# Output: 1
#
# Example 3:
#
# Input: target = 11, nums = [1,1,1,1,1,1,1,1]
# Output: 0
#
#
# Constraints:
#
# 1 <= target <= 109
# 1 <= nums.length <= 105
# 1 <= nums[i] <= 104
#
#
# Follow up: If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log(n)).
class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
n = len(nums)
i = 0
total = 0
res = float('inf')
for j in range(n):
total += nums[j]
while total >= target:
res = min(res, j - i + 1)
total -= nums[i]
i += 1
return res if res < float('inf') else 0
# follow up
class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
prefix = [0 for i in range(len(nums) + 1)]
n = len(prefix)
for i in range(1, n):
prefix[i] = nums[i - 1] + prefix[i - 1]
res = float('inf')
for i in range(n):
x = prefix[i]
j = self.binary_search(prefix, x + target)
if j != len(prefix):
res = min(res, j - i)
return res if res < float('inf') else 0
def binary_search(self, array:list, target:int):
left = 0
right = len(array)
while left < right:
mid = (left + right) >> 1
if array[mid] == target:
return mid
if array[mid] < target:
left = mid + 1
else:
right = mid
return left