-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path2156.find-substring-with-given-hash-value.py
60 lines (55 loc) · 2.34 KB
/
2156.find-substring-with-given-hash-value.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Tag: String, Sliding Window, Rolling Hash, Hash Function
# Time: O(N)
# Space: O(1)
# Ref: -
# Note: -
# The hash of a 0-indexed string s of length k, given integers p and m, is computed using the following function:
#
# hash(s, p, m) = (val(s[0]) * p0 + val(s[1]) * p1 + ... + val(s[k-1]) * pk-1) mod m.
#
# Where val(s[i]) represents the index of s[i] in the alphabet from val('a') = 1 to val('z') = 26.
# You are given a string s and the integers power, modulo, k, and hashValue. Return sub, the first substring of s of length k such that hash(sub, power, modulo) == hashValue.
# The test cases will be generated such that an answer always exists.
# A substring is a contiguous non-empty sequence of characters within a string.
#
# Example 1:
#
# Input: s = "leetcode", power = 7, modulo = 20, k = 2, hashValue = 0
# Output: "ee"
# Explanation: The hash of "ee" can be computed to be hash("ee", 7, 20) = (5 * 1 + 5 * 7) mod 20 = 40 mod 20 = 0.
# "ee" is the first substring of length 2 with hashValue 0. Hence, we return "ee".
#
# Example 2:
#
# Input: s = "fbxzaad", power = 31, modulo = 100, k = 3, hashValue = 32
# Output: "fbx"
# Explanation: The hash of "fbx" can be computed to be hash("fbx", 31, 100) = (6 * 1 + 2 * 31 + 24 * 312) mod 100 = 23132 mod 100 = 32.
# The hash of "bxz" can be computed to be hash("bxz", 31, 100) = (2 * 1 + 24 * 31 + 26 * 312) mod 100 = 25732 mod 100 = 32.
# "fbx" is the first substring of length 3 with hashValue 32. Hence, we return "fbx".
# Note that "bxz" also has a hash of 32 but it appears later than "fbx".
#
#
# Constraints:
#
# 1 <= k <= s.length <= 2 * 104
# 1 <= power, modulo <= 109
# 0 <= hashValue < modulo
# s consists of lowercase English letters only.
# The test cases are generated such that an answer always exists.
#
#
class Solution:
def subStrHash(self, s: str, power: int, modulo: int, k: int, hashValue: int) -> str:
n = len(s)
hash = 0
pk = pow(power, k, modulo)
index = 0
for i in range(n - 1, -1, -1):
hash = (hash * power + self.val(s[i])) % modulo
if i < n - k:
hash = (hash - self.val(s[i + k]) * pk + modulo) % modulo
if hash == hashValue:
index = i
return s[index: index + k]
def val(self, ch: str):
return ord(ch) - ord('a') + 1