-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path2179.count-good-triplets-in-an-array.cpp
84 lines (78 loc) · 2.45 KB
/
2179.count-good-triplets-in-an-array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
// Tag: Array, Binary Search, Divide and Conquer, Binary Indexed Tree, Segment Tree, Merge Sort, Ordered Set
// Time: O(NlogN)
// Space: O(N)
// Ref: -
// Note: -
// Video: https://youtu.be/xWhiSWNeLtk
// You are given two 0-indexed arrays nums1 and nums2 of length n, both of which are permutations of [0, 1, ..., n - 1].
// A good triplet is a set of 3 distinct values which are present in increasing order by position both in nums1 and nums2. In other words, if we consider pos1v as the index of the value v in nums1 and pos2v as the index of the value v in nums2, then a good triplet will be a set (x, y, z) where 0 <= x, y, z <= n - 1, such that pos1x < pos1y < pos1z and pos2x < pos2y < pos2z.
// Return the total number of good triplets.
//
// Example 1:
//
// Input: nums1 = [2,0,1,3], nums2 = [0,1,2,3]
// Output: 1
// Explanation:
// There are 4 triplets (x,y,z) such that pos1x < pos1y < pos1z. They are (2,0,1), (2,0,3), (2,1,3), and (0,1,3).
// Out of those triplets, only the triplet (0,1,3) satisfies pos2x < pos2y < pos2z. Hence, there is only 1 good triplet.
//
// Example 2:
//
// Input: nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3]
// Output: 4
// Explanation: The 4 good triplets are (4,0,3), (4,0,2), (4,1,3), and (4,1,2).
//
//
// Constraints:
//
// n == nums1.length == nums2.length
// 3 <= n <= 105
// 0 <= nums1[i], nums2[i] <= n - 1
// nums1 and nums2 are permutations of [0, 1, ..., n - 1].
//
//
class BitTree {
public:
int n;
vector<int> arr;
BitTree(int size) {
n = size;
arr.resize(size + 1);
}
void update(int i, int delta) {
i = i + 1;
while (i <= n) {
arr[i] += delta;
i += i & -i;
}
}
int query(int i) {
int res = 0;
i = i + 1;
while (i > 0) {
res += arr[i];
i -= i & -i;
}
return res;
}
};
class Solution {
public:
long long goodTriplets(vector<int>& nums1, vector<int>& nums2) {
int n = nums1.size();
vector<int> indexes(n, 0);
for (int i = 0; i < n; i++) {
indexes[nums2[i]] = i;
}
BitTree bit(n);
long long res = 0;
for (int i = 0; i < n; i++) {
int mid = indexes[nums1[i]];
int small = bit.query(mid);
int big = n - 1 - mid - (i - small);
res += 1LL * big * small;
bit.update(mid, 1);
}
return res;
}
};