-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path2551.put-marbles-in-bags.cpp
94 lines (83 loc) · 2.74 KB
/
2551.put-marbles-in-bags.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
// Tag: Array, Greedy, Sorting, Heap (Priority Queue)
// Time: O(N)
// Space: O(N)
// Ref: -
// Note: -
// Video: https://youtu.be/HnwRRXPEmDE
// You have k bags. You are given a 0-indexed integer array weights where weights[i] is the weight of the ith marble. You are also given the integer k.
// Divide the marbles into the k bags according to the following rules:
//
// No bag is empty.
// If the ith marble and jth marble are in a bag, then all marbles with an index between the ith and jth indices should also be in that same bag.
// If a bag consists of all the marbles with an index from i to j inclusively, then the cost of the bag is weights[i] + weights[j].
//
// The score after distributing the marbles is the sum of the costs of all the k bags.
// Return the difference between the maximum and minimum scores among marble distributions.
//
// Example 1:
//
// Input: weights = [1,3,5,1], k = 2
// Output: 4
// Explanation:
// The distribution [1],[3,5,1] results in the minimal score of (1+1) + (3+1) = 6.
// The distribution [1,3],[5,1], results in the maximal score of (1+3) + (5+1) = 10.
// Thus, we return their difference 10 - 6 = 4.
//
// Example 2:
//
// Input: weights = [1, 3], k = 2
// Output: 0
// Explanation: The only distribution possible is [1],[3].
// Since both the maximal and minimal score are the same, we return 0.
//
//
// Constraints:
//
// 1 <= k <= weights.length <= 105
// 1 <= weights[i] <= 109
//
//
class Solution {
public:
long long putMarbles(vector<int>& weights, int k) {
int n = weights.size();
if (k == n) {
return 0;
}
k = k - 1;
vector<int> splits(n - 1, 0);
for (int i = 0; i < n - 1; i++) {
splits[i] = weights[i] + weights[i + 1];
}
sort(splits.begin(), splits.end());
long long diff = 0;
for (int i = 0; i < k; i++) {
diff += splits[splits.size() - i - 1] - splits[i];
}
return diff;
}
};
class Solution {
public:
long long putMarbles(vector<int>& weights, int k) {
int n = weights.size();
if (k == n) {
return 0;
}
k = k - 1;
vector<int> splits(n - 1, 0);
for (int i = 0; i < n - 1; i++) {
splits[i] = weights[i] + weights[i + 1];
}
long long diff = 0;
nth_element(splits.begin(), splits.begin() + k, splits.end());
for (int i = 0; i < k; i++) {
diff -= splits[i];
}
nth_element(splits.begin(), splits.begin() + splits.size() - k - 1, splits.end());
for (int i = 0; i < k; i++) {
diff += splits[splits.size() - i - 1];
}
return diff;
}
};