-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path938.range-sum-of-bst.py
59 lines (54 loc) · 1.54 KB
/
938.range-sum-of-bst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Tag: Tree, Depth-First Search, Binary Search Tree, Binary Tree
# Time: O(N)
# Space: O(W)
# Ref: -
# Note: -
# Given the root node of a binary search tree and two integers low and high, return the sum of values of all nodes with a value in the inclusive range [low, high].
#
# Example 1:
#
#
# Input: root = [10,5,15,3,7,null,18], low = 7, high = 15
# Output: 32
# Explanation: Nodes 7, 10, and 15 are in the range [7, 15]. 7 + 10 + 15 = 32.
#
# Example 2:
#
#
# Input: root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
# Output: 23
# Explanation: Nodes 6, 7, and 10 are in the range [6, 10]. 6 + 7 + 10 = 23.
#
#
# Constraints:
#
# The number of nodes in the tree is in the range [1, 2 * 104].
# 1 <= Node.val <= 105
# 1 <= low <= high <= 105
# All Node.val are unique.
#
#
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from collections import deque
class Solution:
def rangeSumBST(self, root: Optional[TreeNode], low: int, high: int) -> int:
res = 0
q = deque([root])
while len(q) > 0:
cur = q.popleft()
if cur is None:
continue
if cur.val < low:
q.append(cur.right)
elif cur.val > high:
q.append(cur.left)
else:
res += cur.val
q.append(cur.left)
q.append(cur.right)
return res