forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGridSampler.cpp
620 lines (566 loc) · 29.1 KB
/
GridSampler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
#include <ATen/native/GridSampler.h>
#include <ATen/ATen.h>
#include <ATen/Device.h>
#include <ATen/NativeFunctions.h>
#include <c10/core/Layout.h>
#include <ATen/cpu/vml.h>
#include <ATen/native/cpu/GridSamplerKernel.h>
#include <c10/util/Exception.h>
#ifdef _OPENMP
#include <omp.h>
#endif
namespace at { namespace native {
using at::native::detail::GridSamplerInterpolation;
using at::native::detail::GridSamplerPadding;
namespace {
template<typename scalar_t>
static inline scalar_t clip_coordinates(scalar_t in, int64_t clip_limit) {
return std::min(static_cast<scalar_t>(clip_limit - 1), std::max(in, static_cast<scalar_t>(0)));
}
// clip_coordinates_set_grad works similarly to clip_coordinates except that
// it also returns the `d output / d input` via pointer argument `grad_in`.
// This is useful in the backward pass of grid_sampler.
template<typename scalar_t>
static inline scalar_t clip_coordinates_set_grad(scalar_t in, int64_t clip_limit,
scalar_t *grad_in) {
if (in < static_cast<scalar_t>(0)) {
*grad_in = static_cast<scalar_t>(0);
return static_cast<scalar_t>(0);
} else {
scalar_t max = static_cast<scalar_t>(clip_limit - 1);
if (in > max) {
*grad_in = static_cast<scalar_t>(0);
return max;
} else {
*grad_in = static_cast<scalar_t>(1);
return in;
}
}
}
template<typename scalar_t>
static inline scalar_t reflect_coordinates(scalar_t in, int64_t clip_limit) {
if (clip_limit == static_cast<int64_t>(1)) {
return static_cast<scalar_t>(0);
}
in = std::fabs(in);
scalar_t max = static_cast<scalar_t>(clip_limit - 1);
// `fmod` returns same sign as `in`, which is positive after the `fabs` above.
scalar_t extra = std::fmod(in, max);
int flips = static_cast<int>(std::floor(in / max));
if (flips % 2 == 0) {
return extra;
} else {
return max - extra;
}
}
// reflect_coordinates_set_grad works similarly to reflect_coordinates except
// that it also returns the `d output / d input` via pointer argument
// `grad_in`.
// This is useful in the backward pass of grid_sampler.
template<typename scalar_t>
static inline scalar_t reflect_coordinates_set_grad(scalar_t in, int64_t clip_limit,
scalar_t *grad_in) {
if (clip_limit == static_cast<int64_t>(1)) {
*grad_in = static_cast<scalar_t>(0);
return static_cast<scalar_t>(0);
}
int grad_in_mult_;
if (in < static_cast<scalar_t>(0)) {
grad_in_mult_ = -1;
in = -in;
} else {
grad_in_mult_ = 1;
}
scalar_t max = static_cast<scalar_t>(clip_limit - 1);
// `fmod` returns same sign as `in`, which is positive after the `if` above.
scalar_t extra = std::fmod(in, max);
int flips = static_cast<int>(std::floor(in / max));
if (flips % 2 == 0) {
*grad_in = static_cast<scalar_t>(grad_in_mult_);
return extra;
} else {
*grad_in = static_cast<scalar_t>(-grad_in_mult_);
return max - extra;
}
}
static inline bool within_bounds_2d(int64_t h, int64_t w, int64_t H, int64_t W) {
return h >= 0 && h < H && w >= 0 && w < W;
}
static inline bool within_bounds_3d(int64_t d, int64_t h, int64_t w, int64_t D, int64_t H, int64_t W) {
return d >= 0 && d < D && h >= 0 && h < H && w >= 0 && w < W;
}
template<typename scalar_t>
static inline void safe_add_2d(scalar_t *data, int64_t h, int64_t w,
int64_t sH, int64_t sW, int64_t H, int64_t W,
scalar_t delta) {
if (within_bounds_2d(h, w, H, W)) {
data[h * sH + w * sW] += delta;
}
}
template<typename scalar_t>
static inline void safe_add_3d(scalar_t *data, int64_t d, int64_t h, int64_t w,
int64_t sD, int64_t sH, int64_t sW,
int64_t D, int64_t H, int64_t W,
scalar_t delta) {
if (within_bounds_3d(d, h, w, D, H, W)) {
data[d * sD + h * sH + w * sW] += delta;
}
}
template<typename scalar_t>
Tensor grid_sampler_3d_cpu_impl(const Tensor& input, const Tensor& grid,
GridSamplerInterpolation interpolation_mode,
GridSamplerPadding padding_mode) {
int64_t N = input.size(0);
int64_t C = input.size(1);
int64_t inp_D = input.size(2);
int64_t inp_H = input.size(3);
int64_t inp_W = input.size(4);
int64_t out_D = grid.size(1);
int64_t out_H = grid.size(2);
int64_t out_W = grid.size(3);
auto output = at::empty({N, C, out_D, out_H, out_W}, input.options());
int64_t inp_sN = input.stride(0);
int64_t inp_sC = input.stride(1);
int64_t inp_sD = input.stride(2);
int64_t inp_sH = input.stride(3);
int64_t inp_sW = input.stride(4);
int64_t grid_sN = grid.stride(0);
int64_t grid_sD = grid.stride(1);
int64_t grid_sH = grid.stride(2);
int64_t grid_sW = grid.stride(3);
int64_t grid_sCoor = grid.stride(4);
int64_t out_sN = output.stride(0);
int64_t out_sC = output.stride(1);
int64_t out_sD = output.stride(2);
int64_t out_sH = output.stride(3);
int64_t out_sW = output.stride(4);
scalar_t *inp_ptr = input.data<scalar_t>();
scalar_t *out_ptr = output.data<scalar_t>();
scalar_t *grid_ptr = grid.data<scalar_t>();
// loop over each output pixel
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int64_t n = 0; n < N; ++n) {
scalar_t *grid_ptr_N = grid_ptr + n * grid_sN;
scalar_t *inp_ptr_N = inp_ptr + n * inp_sN;
for (int64_t d = 0; d < out_D; ++d) {
for (int64_t h = 0; h < out_H; ++h) {
for (int64_t w = 0; w < out_W; ++w) {
// get the corresponding input x, y, z co-ordinates from grid
scalar_t *grid_ptr_NDHW = grid_ptr_N + d * grid_sD + h * grid_sH + w * grid_sW;
scalar_t ix = *grid_ptr_NDHW;
scalar_t iy = grid_ptr_NDHW[grid_sCoor];
scalar_t iz = grid_ptr_NDHW[2 * grid_sCoor];
// normalize ix, iy, iz from [-1, 1] to [0, inp_W-1] & [0, inp_H-1] & [0, inp_D-1]
ix = ((ix + 1) / 2) * (inp_W - 1);
iy = ((iy + 1) / 2) * (inp_H - 1);
iz = ((iz + 1) / 2) * (inp_D - 1);
if (padding_mode == GridSamplerPadding::Border) {
// clip coordinates to image borders
ix = clip_coordinates(ix, inp_W);
iy = clip_coordinates(iy, inp_H);
iz = clip_coordinates(iz, inp_D);
} else if (padding_mode == GridSamplerPadding::Reflection) {
// reflect coordinates by image borders
ix = reflect_coordinates(ix, inp_W);
iy = reflect_coordinates(iy, inp_H);
iz = reflect_coordinates(iz, inp_D);
}
if (interpolation_mode == GridSamplerInterpolation::Bilinear) {
// get corner pixel values from (x, y, z)
// for 4d, we used north-east-south-west
// for 5d, we add top-bottom
int64_t ix_tnw = static_cast<int64_t>(std::floor(ix));
int64_t iy_tnw = static_cast<int64_t>(std::floor(iy));
int64_t iz_tnw = static_cast<int64_t>(std::floor(iz));
int64_t ix_tne = ix_tnw + 1;
int64_t iy_tne = iy_tnw;
int64_t iz_tne = iz_tnw;
int64_t ix_tsw = ix_tnw;
int64_t iy_tsw = iy_tnw + 1;
int64_t iz_tsw = iz_tnw;
int64_t ix_tse = ix_tnw + 1;
int64_t iy_tse = iy_tnw + 1;
int64_t iz_tse = iz_tnw;
int64_t ix_bnw = ix_tnw;
int64_t iy_bnw = iy_tnw;
int64_t iz_bnw = iz_tnw + 1;
int64_t ix_bne = ix_tnw + 1;
int64_t iy_bne = iy_tnw;
int64_t iz_bne = iz_tnw + 1;
int64_t ix_bsw = ix_tnw;
int64_t iy_bsw = iy_tnw + 1;
int64_t iz_bsw = iz_tnw + 1;
int64_t ix_bse = ix_tnw + 1;
int64_t iy_bse = iy_tnw + 1;
int64_t iz_bse = iz_tnw + 1;
// get surfaces to each neighbor:
scalar_t tnw = (ix_bse - ix) * (iy_bse - iy) * (iz_bse - iz);
scalar_t tne = (ix - ix_bsw) * (iy_bsw - iy) * (iz_bsw - iz);
scalar_t tsw = (ix_bne - ix) * (iy - iy_bne) * (iz_bne - iz);
scalar_t tse = (ix - ix_bnw) * (iy - iy_bnw) * (iz_bnw - iz);
scalar_t bnw = (ix_tse - ix) * (iy_tse - iy) * (iz - iz_tse);
scalar_t bne = (ix - ix_tsw) * (iy_tsw - iy) * (iz - iz_tsw);
scalar_t bsw = (ix_tne - ix) * (iy - iy_tne) * (iz - iz_tne);
scalar_t bse = (ix - ix_tnw) * (iy - iy_tnw) * (iz - iz_tnw);
// calculate bilinear weighted pixel value and set output pixel
scalar_t *out_ptr_NCDHW = out_ptr + n * out_sN + d * out_sD + h * out_sH + w * out_sW;
scalar_t *inp_ptr_NC = inp_ptr_N;
for (int c = 0; c < C; ++c, out_ptr_NCDHW += out_sC, inp_ptr_NC += inp_sC) {
// (c, iz_tnw, iy_tnw, ix_tnw) * tnw + (c, iz_tne, iy_tne, ix_tne) * tne
// + (c, iz_tsw, iy_tsw, ix_tsw) * tsw + (c, iz_tse, iy_tse, ix_tse) * tse
// + (c, iz_bnw, iy_bnw, ix_bnw) * bnw + (c, iz_bne, iy_bne, ix_bne) * bne
// + (c, iz_bsw, iy_bsw, ix_bsw) * bsw + (c, iz_bse, iy_bse, ix_bse) * bse
*out_ptr_NCDHW = static_cast<scalar_t>(0);
if (within_bounds_3d(iz_tnw, iy_tnw, ix_tnw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tnw * inp_sD + iy_tnw * inp_sH + ix_tnw * inp_sW] * tnw;
}
if (within_bounds_3d(iz_tne, iy_tne, ix_tne, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tne * inp_sD + iy_tne * inp_sH + ix_tne * inp_sW] * tne;
}
if (within_bounds_3d(iz_tsw, iy_tsw, ix_tsw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tsw * inp_sD + iy_tsw * inp_sH + ix_tsw * inp_sW] * tsw;
}
if (within_bounds_3d(iz_tse, iy_tse, ix_tse, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tse * inp_sD + iy_tse * inp_sH + ix_tse * inp_sW] * tse;
}
if (within_bounds_3d(iz_bnw, iy_bnw, ix_bnw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bnw * inp_sD + iy_bnw * inp_sH + ix_bnw * inp_sW] * bnw;
}
if (within_bounds_3d(iz_bne, iy_bne, ix_bne, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bne * inp_sD + iy_bne * inp_sH + ix_bne * inp_sW] * bne;
}
if (within_bounds_3d(iz_bsw, iy_bsw, ix_bsw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bsw * inp_sD + iy_bsw * inp_sH + ix_bsw * inp_sW] * bsw;
}
if (within_bounds_3d(iz_bse, iy_bse, ix_bse, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bse * inp_sD + iy_bse * inp_sH + ix_bse * inp_sW] * bse;
}
}
} else if (interpolation_mode == GridSamplerInterpolation::Nearest) {
int64_t ix_nearest = static_cast<int64_t>(std::round(ix));
int64_t iy_nearest = static_cast<int64_t>(std::round(iy));
int64_t iz_nearest = static_cast<int64_t>(std::round(iz));
// assign nearest neighor pixel value to output pixel
scalar_t *out_ptr_NCDHW = out_ptr + n * out_sN + d * out_sD + h * out_sH + w * out_sW;
scalar_t *inp_ptr_NC = inp_ptr_N;
for (int c = 0; c < C; ++c, out_ptr_NCDHW += out_sC, inp_ptr_NC += inp_sC) {
if (within_bounds_3d(iz_nearest, iy_nearest, ix_nearest, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW = inp_ptr_NC[iz_nearest * inp_sD + iy_nearest * inp_sH + ix_nearest * inp_sW];
} else {
*out_ptr_NCDHW = static_cast<scalar_t>(0);
}
}
}
}
}
}
}
return output;
}
template<typename scalar_t>
std::tuple<Tensor, Tensor>
grid_sampler_3d_backward_cpu_impl(const Tensor& grad_output,
const Tensor& input, const Tensor& grid,
GridSamplerInterpolation interpolation_mode,
GridSamplerPadding padding_mode) {
auto grad_input = at::zeros_like(input);
auto grad_grid = at::empty_like(grid);
// If interpolation mode is Nearest, then grad_grid is not filled in the
// loop below.
if (interpolation_mode == GridSamplerInterpolation::Nearest) {
grad_grid.zero_();
}
int64_t N = input.size(0);
int64_t C = input.size(1);
int64_t inp_D = input.size(2);
int64_t inp_H = input.size(3);
int64_t inp_W = input.size(4);
int64_t out_D = grid.size(1);
int64_t out_H = grid.size(2);
int64_t out_W = grid.size(3);
int64_t inp_sN = input.stride(0);
int64_t inp_sC = input.stride(1);
int64_t inp_sD = input.stride(2);
int64_t inp_sH = input.stride(3);
int64_t inp_sW = input.stride(4);
int64_t grid_sN = grid.stride(0);
int64_t grid_sD = grid.stride(1);
int64_t grid_sH = grid.stride(2);
int64_t grid_sW = grid.stride(3);
int64_t grid_sCoor = grid.stride(4);
int64_t gOut_sN = grad_output.stride(0);
int64_t gOut_sC = grad_output.stride(1);
int64_t gOut_sD = grad_output.stride(2);
int64_t gOut_sH = grad_output.stride(3);
int64_t gOut_sW = grad_output.stride(4);
int64_t gInp_sN = grad_input.stride(0);
int64_t gInp_sC = grad_input.stride(1);
int64_t gInp_sD = grad_input.stride(2);
int64_t gInp_sH = grad_input.stride(3);
int64_t gInp_sW = grad_input.stride(4);
int64_t gGrid_sN = grad_grid.stride(0);
int64_t gGrid_sW = grad_grid.stride(3);
scalar_t *inp_ptr = input.data<scalar_t>();
scalar_t *grid_ptr = grid.data<scalar_t>();
scalar_t *gOut_ptr = grad_output.data<scalar_t>();
scalar_t *gInp_ptr = grad_input.data<scalar_t>();
scalar_t *gGrid_ptr = grad_grid.data<scalar_t>();
// loop over each output pixel
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int64_t n = 0; n < N; ++n) {
scalar_t *grid_ptr_N = grid_ptr + n * grid_sN;
scalar_t *inp_ptr_N = inp_ptr + n * inp_sN;
scalar_t *gGrid_ptr_NDHW = gGrid_ptr + n * gGrid_sN;
for (int64_t d = 0; d < out_D; ++d) {
for (int64_t h = 0; h < out_H; ++h) {
for (int64_t w = 0; w < out_W; ++w, gGrid_ptr_NDHW += gGrid_sW /* grad_grid is contiguous */ ) {
// get the corresponding input x, y, z co-ordinates from grid
scalar_t *grid_ptr_NDHW = grid_ptr_N + d * grid_sD + h * grid_sH + w * grid_sW;
scalar_t ix = *grid_ptr_NDHW;
scalar_t iy = grid_ptr_NDHW[grid_sCoor];
scalar_t iz = grid_ptr_NDHW[2 * grid_sCoor];
// normalize ix, iy, iz from [-1, 1] to [0, inp_W-1] & [0, inp_H-1] & [0, inp_D-1]
ix = ((ix + 1) / 2) * (inp_W - 1);
iy = ((iy + 1) / 2) * (inp_H - 1);
iz = ((iz + 1) / 2) * (inp_D - 1);
// multipliers for gradients on ix, iy, and iz
// E.g., 0 for out-of-bound indices when GridSamplerPadding::Border
scalar_t gix_mult, giy_mult, giz_mult;
if (padding_mode == GridSamplerPadding::Border) {
// clip coordinates to image borders
ix = clip_coordinates_set_grad(ix, inp_W, &gix_mult);
iy = clip_coordinates_set_grad(iy, inp_H, &giy_mult);
iz = clip_coordinates_set_grad(iz, inp_D, &giz_mult);
} else if (padding_mode == GridSamplerPadding::Reflection) {
// reflect coordinates by image borders
ix = reflect_coordinates_set_grad(ix, inp_W, &gix_mult);
iy = reflect_coordinates_set_grad(iy, inp_H, &giy_mult);
iz = reflect_coordinates_set_grad(iz, inp_D, &giz_mult);
} else { // padding_mode == GridSamplerPadding::Zeros
gix_mult = static_cast<scalar_t>(1);
giy_mult = static_cast<scalar_t>(1);
giz_mult = static_cast<scalar_t>(1);
}
if (interpolation_mode == GridSamplerInterpolation::Bilinear) {
// get corner pixel values from (x, y, z)
// for 4d, we used north-east-south-west
// for 5d, we add top-bottom
int64_t ix_tnw = static_cast<int64_t>(std::floor(ix));
int64_t iy_tnw = static_cast<int64_t>(std::floor(iy));
int64_t iz_tnw = static_cast<int64_t>(std::floor(iz));
int64_t ix_tne = ix_tnw + 1;
int64_t iy_tne = iy_tnw;
int64_t iz_tne = iz_tnw;
int64_t ix_tsw = ix_tnw;
int64_t iy_tsw = iy_tnw + 1;
int64_t iz_tsw = iz_tnw;
int64_t ix_tse = ix_tnw + 1;
int64_t iy_tse = iy_tnw + 1;
int64_t iz_tse = iz_tnw;
int64_t ix_bnw = ix_tnw;
int64_t iy_bnw = iy_tnw;
int64_t iz_bnw = iz_tnw + 1;
int64_t ix_bne = ix_tnw + 1;
int64_t iy_bne = iy_tnw;
int64_t iz_bne = iz_tnw + 1;
int64_t ix_bsw = ix_tnw;
int64_t iy_bsw = iy_tnw + 1;
int64_t iz_bsw = iz_tnw + 1;
int64_t ix_bse = ix_tnw + 1;
int64_t iy_bse = iy_tnw + 1;
int64_t iz_bse = iz_tnw + 1;
// get surfaces to each neighbor:
scalar_t tnw = (ix_bse - ix) * (iy_bse - iy) * (iz_bse - iz);
scalar_t tne = (ix - ix_bsw) * (iy_bsw - iy) * (iz_bsw - iz);
scalar_t tsw = (ix_bne - ix) * (iy - iy_bne) * (iz_bne - iz);
scalar_t tse = (ix - ix_bnw) * (iy - iy_bnw) * (iz_bnw - iz);
scalar_t bnw = (ix_tse - ix) * (iy_tse - iy) * (iz - iz_tse);
scalar_t bne = (ix - ix_tsw) * (iy_tsw - iy) * (iz - iz_tsw);
scalar_t bsw = (ix_tne - ix) * (iy - iy_tne) * (iz - iz_tne);
scalar_t bse = (ix - ix_tnw) * (iy - iy_tnw) * (iz - iz_tnw);
scalar_t gix = static_cast<scalar_t>(0), giy = static_cast<scalar_t>(0), giz = static_cast<scalar_t>(0);
scalar_t *gOut_ptr_NCDHW = gOut_ptr + n * gOut_sN + d * gOut_sD + h * gOut_sH + w * gOut_sW;
scalar_t *gInp_ptr_NC = gInp_ptr + n * gInp_sN;
scalar_t *inp_ptr_NC = inp_ptr_N;
// calculate bilinear weighted pixel value and set output pixel
for (int c = 0; c < C; ++c, gOut_ptr_NCDHW += gOut_sC, gInp_ptr_NC += gInp_sC, inp_ptr_NC += inp_sC) {
scalar_t gOut = *gOut_ptr_NCDHW;
// calculate and set grad_input
safe_add_3d(gInp_ptr_NC, iz_tnw, iy_tnw, ix_tnw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tnw * gOut);
safe_add_3d(gInp_ptr_NC, iz_tne, iy_tne, ix_tne, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tne * gOut);
safe_add_3d(gInp_ptr_NC, iz_tsw, iy_tsw, ix_tsw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tsw * gOut);
safe_add_3d(gInp_ptr_NC, iz_tse, iy_tse, ix_tse, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tse * gOut);
safe_add_3d(gInp_ptr_NC, iz_bnw, iy_bnw, ix_bnw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bnw * gOut);
safe_add_3d(gInp_ptr_NC, iz_bne, iy_bne, ix_bne, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bne * gOut);
safe_add_3d(gInp_ptr_NC, iz_bsw, iy_bsw, ix_bsw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bsw * gOut);
safe_add_3d(gInp_ptr_NC, iz_bse, iy_bse, ix_bse, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bse * gOut);
// calculate grad_grid
if (within_bounds_3d(iz_tnw, iy_tnw, ix_tnw, inp_D, inp_H, inp_W)) {
scalar_t tnw_val = inp_ptr_NC[iz_tnw * inp_sD + iy_tnw * inp_sH + ix_tnw * inp_sW];
gix -= tnw_val * (iy_bse - iy) * (iz_bse - iz) * gOut;
giy -= tnw_val * (ix_bse - ix) * (iz_bse - iz) * gOut;
giz -= tnw_val * (ix_bse - ix) * (iy_bse - iy) * gOut;
}
if (within_bounds_3d(iz_tne, iy_tne, ix_tne, inp_D, inp_H, inp_W)) {
scalar_t tne_val = inp_ptr_NC[iz_tne * inp_sD + iy_tne * inp_sH + ix_tne * inp_sW];
gix += tne_val * (iy_bsw - iy) * (iz_bsw - iz) * gOut;
giy -= tne_val * (ix - ix_bsw) * (iz_bsw - iz) * gOut;
giz -= tne_val * (ix - ix_bsw) * (iy_bsw - iy) * gOut;
}
if (within_bounds_3d(iz_tsw, iy_tsw, ix_tsw, inp_D, inp_H, inp_W)) {
scalar_t tsw_val = inp_ptr_NC[iz_tsw * inp_sD + iy_tsw * inp_sH + ix_tsw * inp_sW];
gix -= tsw_val * (iy - iy_bne) * (iz_bne - iz) * gOut;
giy += tsw_val * (ix_bne - ix) * (iz_bne - iz) * gOut;
giz -= tsw_val * (ix_bne - ix) * (iy - iy_bne) * gOut;
}
if (within_bounds_3d(iz_tse, iy_tse, ix_tse, inp_D, inp_H, inp_W)) {
scalar_t tse_val = inp_ptr_NC[iz_tse * inp_sD + iy_tse * inp_sH + ix_tse * inp_sW];
gix += tse_val * (iy - iy_bnw) * (iz_bnw - iz) * gOut;
giy += tse_val * (ix - ix_bnw) * (iz_bnw - iz) * gOut;
giz -= tse_val * (ix - ix_bnw) * (iy - iy_bnw) * gOut;
}
if (within_bounds_3d(iz_bnw, iy_bnw, ix_bnw, inp_D, inp_H, inp_W)) {
scalar_t bnw_val = inp_ptr_NC[iz_bnw * inp_sD + iy_bnw * inp_sH + ix_bnw * inp_sW];
gix -= bnw_val * (iy_tse - iy) * (iz - iz_tse) * gOut;
giy -= bnw_val * (ix_tse - ix) * (iz - iz_tse) * gOut;
giz += bnw_val * (ix_tse - ix) * (iy_tse - iy) * gOut;
}
if (within_bounds_3d(iz_bne, iy_bne, ix_bne, inp_D, inp_H, inp_W)) {
scalar_t bne_val = inp_ptr_NC[iz_bne * inp_sD + iy_bne * inp_sH + ix_bne * inp_sW];
gix += bne_val * (iy_tsw - iy) * (iz - iz_tsw) * gOut;
giy -= bne_val * (ix - ix_tsw) * (iz - iz_tsw) * gOut;
giz += bne_val * (ix - ix_tsw) * (iy_tsw - iy) * gOut;
}
if (within_bounds_3d(iz_bsw, iy_bsw, ix_bsw, inp_D, inp_H, inp_W)) {
scalar_t bsw_val = inp_ptr_NC[iz_bsw * inp_sD + iy_bsw * inp_sH + ix_bsw * inp_sW];
gix -= bsw_val * (iy - iy_tne) * (iz - iz_tne) * gOut;
giy += bsw_val * (ix_tne - ix) * (iz - iz_tne) * gOut;
giz += bsw_val * (ix_tne - ix) * (iy - iy_tne) * gOut;
}
if (within_bounds_3d(iz_bse, iy_bse, ix_bse, inp_D, inp_H, inp_W)) {
scalar_t bse_val = inp_ptr_NC[iz_bse * inp_sD + iy_bse * inp_sH + ix_bse * inp_sW];
gix += bse_val * (iy - iy_tnw) * (iz - iz_tnw) * gOut;
giy += bse_val * (ix - ix_tnw) * (iz - iz_tnw) * gOut;
giz += bse_val * (ix - ix_tnw) * (iy - iy_tnw) * gOut;
}
}
// un-normalize grad_grid values back to [-1, 1] constraints
gix = gix * (inp_W - 1) / 2;
giy = giy * (inp_H - 1) / 2;
giz = giz * (inp_D - 1) / 2;
// assuming grad_grid is contiguous
gGrid_ptr_NDHW[0] = gix_mult * gix;
gGrid_ptr_NDHW[1] = giy_mult * giy;
gGrid_ptr_NDHW[2] = giz_mult * giz;
} else if (interpolation_mode == GridSamplerInterpolation::Nearest) {
int64_t ix_nearest = static_cast<int64_t>(std::round(ix));
int64_t iy_nearest = static_cast<int64_t>(std::round(iy));
int64_t iz_nearest = static_cast<int64_t>(std::round(iz));
// assign nearest neighor pixel value to output pixel
scalar_t *gOut_ptr_NCDHW = gOut_ptr + n * gOut_sN + d * gOut_sD + h * gOut_sH + w * gOut_sW;
scalar_t *gInp_ptr_NC = gInp_ptr + n * gInp_sN;
for (int c = 0; c < C; ++c, gOut_ptr_NCDHW += gOut_sC, gInp_ptr_NC += gInp_sC) {
// calculate and set grad_input
safe_add_3d(gInp_ptr_NC, iz_nearest, iy_nearest, ix_nearest,
gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, *gOut_ptr_NCDHW);
}
}
}
}
}
}
return std::make_tuple(grad_input, grad_grid);
}
} // namespace
// No shape checking needed here. See # NOTE [ grid_sampler Native Functions ].
Tensor grid_sampler_2d_cpu(const Tensor& input, const Tensor& grid,
int64_t interpolation_mode, int64_t padding_mode) {
return grid_sampler_2d_cpu_kernel(kCPU, input, grid, interpolation_mode, padding_mode);
}
DEFINE_DISPATCH(grid_sampler_2d_cpu_kernel);
// No shape checking needed here. See # NOTE [ grid_sampler Native Functions ].
Tensor grid_sampler_3d_cpu(const Tensor& input, const Tensor& grid,
int64_t interpolation_mode, int64_t padding_mode) {
return AT_DISPATCH_FLOATING_TYPES(input.type(), "grid_sampler3d_cpu", [&] {
return grid_sampler_3d_cpu_impl<scalar_t>(
input, grid, static_cast<GridSamplerInterpolation>(interpolation_mode),
static_cast<GridSamplerPadding>(padding_mode));
});
}
// No shape checking needed here. See # NOTE [ grid_sampler Native Functions ].
std::tuple<Tensor, Tensor>
grid_sampler_2d_backward_cpu(const Tensor& grad_output, const Tensor& input, const Tensor& grid,
int64_t interpolation_mode, int64_t padding_mode) {
return grid_sampler_2d_backward_cpu_kernel(kCPU, grad_output, input, grid, interpolation_mode, padding_mode);
}
DEFINE_DISPATCH(grid_sampler_2d_backward_cpu_kernel);
// No shape checking needed here. See # NOTE [ grid_sampler Native Functions ].
std::tuple<Tensor, Tensor>
grid_sampler_3d_backward_cpu(const Tensor& grad_output, const Tensor& input, const Tensor& grid,
int64_t interpolation_mode, int64_t padding_mode) {
return AT_DISPATCH_FLOATING_TYPES(input.type(), "grid_sampler_3d_backward_cpu", [&] {
return grid_sampler_3d_backward_cpu_impl<scalar_t>(
grad_output, input, grid,
static_cast<GridSamplerInterpolation>(interpolation_mode),
static_cast<GridSamplerPadding>(padding_mode));
});
}
Tensor grid_sampler(const Tensor& input, const Tensor& grid,
int64_t interpolation_mode, int64_t padding_mode) {
AT_CHECK(
input.defined() && grid.defined(),
"grid_sampler(): expected input and grid to not be undefined, but input "
"is ", input, " and grid is ", grid);
auto input_opt = input.options();
auto grid_opt = grid.options();
AT_CHECK(
input_opt.device() == grid_opt.device(),
"grid_sampler(): expected input and grid to be on same device, but input "
"is on ", input_opt.device(), " and grid is on ", grid_opt.device());
AT_CHECK(
input_opt.dtype() == grid_opt.dtype(),
"grid_sampler(): expected input and grid to have same dtype, but input "
"has ", input_opt.dtype(), " and grid has ", grid_opt.dtype());
AT_CHECK(
input_opt.layout() == kStrided && grid_opt.layout() == kStrided,
"grid_sampler(): expected input and grid to have torch.strided layout, but "
"input has ", input_opt.layout(), " and grid has ", grid_opt.layout());
AT_CHECK(
(input.dim() == 4 || input.dim() == 5) && input.dim() == grid.dim(),
"grid_sampler(): expected 4D or 5D input and grid with same number of "
"dimensions, but got input with sizes ", input.sizes(),
" and grid with sizes ", grid.sizes());
AT_CHECK(
input.size(0) == grid.size(0),
"grid_sampler(): expected grid and input to have same batch size, but got "
"input with sizes ", input.sizes(), " and grid with sizes ", grid.sizes());
AT_CHECK(
grid.size(-1) == input.dim() - 2,
"grid_sampler(): expected grid to have size ", input.dim() - 2, " in last "
"dimension, but got grid with sizes ", grid.sizes());
for (int64_t i = 2; i < input.dim(); i++) {
AT_CHECK(input.size(i) > 0,
"grid_sampler(): expected input to have non-empty spatial dimensions, "
"but input has sizes ", input.sizes(), " with dimension ", i, " being "
"empty");
}
// cudnn does not support inputs larger than 1024
if (at::native::cudnn_is_acceptable(input) &&
at::native::cudnn_is_acceptable(grid) &&
static_cast<GridSamplerInterpolation>(interpolation_mode) == GridSamplerInterpolation::Bilinear &&
static_cast<GridSamplerPadding>(padding_mode) == GridSamplerPadding::Zeros &&
input.dim() == 4 &&
input.size(1) <= 1024) {
return cudnn_grid_sampler(input, grid);
}
if (input.dim() == 4) {
return at::grid_sampler_2d(input, grid, interpolation_mode, padding_mode);
} else {
return at::grid_sampler_3d(input, grid, interpolation_mode, padding_mode);
}
}
}} // namespace at::native