-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_priors.py
164 lines (118 loc) · 5.22 KB
/
create_priors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from model import load_model, Models
from data import Language
import argparse
import json
import os
import numpy as np
from run_test_normalization import load_social_group_file, extract_prompts_groups
from collections import defaultdict
from langdetect import detect
from langdetect.lang_detect_exception import LangDetectException
def create_score_list(data, word_list, model):
max_token = max(item['token'] for item in data)
score_list = [None] * (max_token + 1)
words_counted_in_file = 0
words_not_in_file = 0
for item in data:
token_id = item['token']
score = item['score']
token = model.tokenizer.decode(token_id)
if token in word_list:
score_list[token_id] = score
else:
score_list[token_id] = 100
not_100_values = np.array([value for value in score_list if value != 100])
normalized_values = not_100_values / not_100_values.sum()
j = 0
for i in range(len(score_list)):
if score_list[i] != 100:
score_list[i] = normalized_values[j]
j += 1
return score_list
def create_score_list_for_greek(data, model):
max_token = max(item['token'] for item in data)
score_list = [None] * (max_token + 1)
greek_words = 0
for item in data:
token_id = item['token']
score = item['score']
token = model.tokenizer.decode(token_id)
try:
if detect(token) == 'el':
score_list[token_id] = score
greek_words += 1
else:
score_list[token_id] = 100
except LangDetectException:
pass
print(f'The number of greek words is {greek_words}')
return score_list
social_groups = ["religion", "age", "gender", "countries", "race", "profession", "political", "sexuality", "lifestyle"]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Multilingual Model Prior probability creation.')
parser.add_argument('--language_path', type=str, default="social_groups/french_data.json", help="Language to analyse.")
parser.add_argument('--output_dir', type=str, default="./prior_probs", help="Output directory for generated data.")
parser.add_argument('--model_name', type=str, default="xlm-roberta-base", help="Model Evaluated")
parser.add_argument('--model_top_k', type=int, default=250002, help="Top K results used for matrix generation, set this to the vocabulary size.")
parser.add_argument('--verbose', action="store_false")
args = parser.parse_args()
verbose = args.verbose
args.language = os.path.basename(args.language_path).split("_")[0]
out_path = args.output_dir + "/" + args.language + "_priors.json"
assert Language.has_value(args.language)
args.language = Language(args.language)
assert os.path.exists(args.language_path)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
assert Models.has_value(args.model_name)
model = Models(args.model_name)
model_attributes = None
if model == Models.XLMR:
model_attributes = {
"pipeline":"fill-mask",
"top_k":args.model_top_k
}
assert model_attributes is not None
ok, language_data = load_social_group_file(args.language_path)
assert ok
if args.language == Language.English:
with open(f'words_dictionnaries/en.txt', 'r') as f:
words_in_file = set(line.strip() for line in f)
print(len(words_in_file))
elif args.language == Language.French:
with open(f'words_dictionnaries/fr.txt', 'r') as f:
words_in_file = set(line.strip() for line in f)
print(len(words_in_file))
if args.language == Language.Spanish:
with open(f'words_dictionnaries/es.txt', 'r') as f:
words_in_file = set(line.strip() for line in f)
print(len(words_in_file))
if args.language == Language.Croatian:
with open(f'words_dictionnaries/cro.txt', 'r') as f:
words_in_file = set(line.strip() for line in f)
print(len(words_in_file))
if verbose:
print("Extracting Social Group data")
prompts, _ = extract_prompts_groups(language_data, social_groups)
priors = defaultdict(list)
if verbose:
print("Loading Model")
unmasker = load_model(model, model_attributes)
assert len(prompts) > 0
unique_prompts = list(set(string for key in prompts for string in prompts[key]))
for prompt in unique_prompts:
if verbose:
print("Analysing prompt: " + prompt)
prompt_masked = prompt.replace("{}", "<mask>")
out = unmasker(prompt_masked)[1]
if args.language == Language.Greek:
priors[prompt] = create_score_list_for_greek(out, unmasker)
else:
priors[prompt] = create_score_list(out, words_in_file, unmasker)
if verbose:
print("Saving to " + out_path)
try:
with open(out_path, 'w') as outfile:
json.dump(priors, outfile)
except TypeError:
print("[ERROR] Unable to serialize the object")