-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom pictures get and save pose.py
74 lines (60 loc) · 3.79 KB
/
random pictures get and save pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import airsim
import os
import numpy as np
import pandas as pd
# 连接到AirSim模拟器
client = airsim.MultirotorClient()
client.confirmConnection()
# 获取图像路径
folder_path = "screen"
# 保存位姿信息的空DataFrame
poses_df = pd.DataFrame(columns=['index', 'x', 'y', 'z', 'yaw', 'pitch', 'roll'])
# 设置随机采样的范围和数量
num_samples = 50 # 需要采样的数量
x_min, x_max, y_min, y_max, z_min, z_max = -4, 4, -4, 4, -5, -2 # 位置范围
yaw_min, yaw_max, pitch_min, pitch_max, roll_min, roll_max = -90, 90, -45, 45, -45, 45 # 姿态范围
# 相机列表
camera_list = ["0", "1", "2", "3", "4"]
# 随机采样并保存图像和位姿信息
poses_list = []
for i in range(num_samples):
# 随机生成目标位置,并设置姿态朝向
x = np.random.uniform(x_min, x_max)
y = np.random.uniform(y_min, y_max)
z = np.random.uniform(z_min, z_max)
yaw = np.random.uniform(yaw_min, yaw_max)
pitch = np.random.uniform(pitch_min, pitch_max)
roll = np.random.uniform(roll_min, roll_max)
pose = airsim.Pose(airsim.Vector3r(x, y, z), airsim.to_quaternion(pitch, roll, yaw))
poses_list.append({'index': i, 'x': x, 'y': y, 'z': z, 'yaw': yaw, 'pitch': pitch, 'roll': roll})
# 移动到目标位置
client.simSetVehiclePose(pose, True)
# # 获取相机图像
# responses = client.simGetImages([airsim.ImageRequest("1", airsim.ImageType.Scene, False, False)])
# img_raw = responses[0]
# 遍历相机列表,获取每个相机的图像
for j, camera_name in enumerate(camera_list):
# 获取相机图像
responses = client.simGetImages([airsim.ImageRequest(camera_name, airsim.ImageType.Scene, False, False)])
img_raw = responses[0]
# 将字节流转换为PIL的Image对象
img1d = np.frombuffer(img_raw.image_data_uint8, dtype=np.uint8)
img_rgb = img1d.reshape(img_raw.height, img_raw.width, 3)
# 保存PNG格式的图像
img_filename = "pose_{0}_x_{1:.2f}_y_{2:.2f}_z_{3:.2f}_yaw_{4:.2f}_pitch_{5:.2f}_roll_{6:.2f}_camera_{4}.png".format(i, x, y, z, yaw, pitch, roll, j)
img_filepath = os.path.join(folder_path, img_filename)
airsim.write_png(os.path.normpath(img_filepath), img_rgb)
print("全部图像和位姿信息均已保存到文件夹:", folder_path)
# 将位姿信息保存到csv文件中
poses_df = pd.DataFrame(poses_list)
poses_df.to_csv(os.path.join(folder_path, 'poses.csv'), index=False)
'''
airsim.Vector3r函数用于创建一个三维向量,表示无人机在三个轴上的位置信息。
airsim.to_quaternion函数则用于将欧拉角(即pitch、roll、yaw)转换为四元数,表示无人机的姿态信息。
四元数是一种数学工具,用于描述三维空间中的旋转。它是由一个实部和三个虚部组成的,通常表示为q = a + bi + cj + dk,
其中a是实部,b、c、d是虚部,i、j、$k$是虚数单位。四元数可以用来表示旋转的方向和角度,它比欧拉角更加稳定和准确,避免了万向锁等问题。
在机器人、计算机图形学和游戏开发等领域中,四元数被广泛应用。在AirSim中,四元数用于表示无人机的姿态信息。
万向锁是一种旋转表示中常见的问题,它发生在使用欧拉角进行旋转时,当旋转角度过大或旋转轴与旋转顺序不当时,就会出现万向锁问题。
万向锁的表现形式是旋转轴和旋转角度不能被唯一确定,即旋转自由度丧失。这会导致旋转结果不可预测,甚至无法进行旋转。
为了避免万向锁问题,可以使用四元数等其他旋转表示方法。在AirSim中,使用欧拉角进行旋转时,也可能会出现万向锁问题,因此建议使用四元数进行姿态表示。
'''