-
Notifications
You must be signed in to change notification settings - Fork 9
/
data.py
239 lines (200 loc) · 8.01 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy as np
import torch
import torch.distributions as td
import torchvision.datasets as datasets
from torchvision import transforms
from torch.utils.data import DataLoader
from prefetch_generator import BackgroundGenerator
import util
from ipdb import set_trace as debug
def build_boundary_distribution(opt):
print(util.magenta("build boundary distribution..."))
opt.data_dim = get_data_dim(opt.problem_name)
prior = build_prior_sampler(opt, opt.samp_bs)
pdata = build_data_sampler(opt, opt.samp_bs)
return pdata, prior
def get_data_dim(problem_name):
return {
'gmm': [2],
'checkerboard': [2],
'moon-to-spiral':[2],
'mnist': [1,32,32],
'celebA32': [3,32,32],
'celebA64': [3,64,64],
'cifar10': [3,32,32],
}.get(problem_name)
def build_prior_sampler(opt, batch_size):
if opt.problem_name == 'moon-to-spiral':
# 'moon-to-spiral' uses Moon as prior distribution
return Moon(batch_size)
# image+VESDE -> use (sigma_max)^2; otherwise use 1.
cov_coef = opt.sigma_max**2 if (util.is_image_dataset(opt) and not util.use_vp_sde(opt)) else 1.
prior = td.MultivariateNormal(torch.zeros(opt.data_dim), cov_coef*torch.eye(opt.data_dim[-1]))
return PriorSampler(prior, batch_size, opt.device)
def build_data_sampler(opt, batch_size):
if util.is_toy_dataset(opt):
return {
'gmm': MixMultiVariateNormal,
'checkerboard': CheckerBoard,
'moon-to-spiral': Spiral,
}.get(opt.problem_name)(batch_size)
elif util.is_image_dataset(opt):
dataset_generator = {
'mnist': generate_mnist_dataset,
'celebA32': generate_celebA_dataset,
'celebA64': generate_celebA_dataset,
'cifar10': generate_cifar10_dataset,
}.get(opt.problem_name)
dataset = dataset_generator(opt)
return DataSampler(dataset, batch_size, opt.device)
else:
raise RuntimeError()
class MixMultiVariateNormal:
def __init__(self, batch_size, radius=12, num=8, sigmas=None):
# build mu's and sigma's
arc = 2*np.pi/num
xs = [np.cos(arc*idx)*radius for idx in range(num)]
ys = [np.sin(arc*idx)*radius for idx in range(num)]
mus = [torch.Tensor([x,y]) for x,y in zip(xs,ys)]
dim = len(mus[0])
sigmas = [torch.eye(dim) for _ in range(num)] if sigmas is None else sigmas
if batch_size%num!=0:
raise ValueError('batch size must be devided by number of gaussian')
self.num = num
self.batch_size = batch_size
self.dists=[
td.multivariate_normal.MultivariateNormal(mu, sigma) for mu, sigma in zip(mus, sigmas)
]
def log_prob(self,x):
# assume equally-weighted
densities=[torch.exp(dist.log_prob(x)) for dist in self.dists]
return torch.log(sum(densities)/len(self.dists))
def sample(self):
ind_sample = self.batch_size/self.num
samples=[dist.sample([int(ind_sample)]) for dist in self.dists]
samples=torch.cat(samples,dim=0)
return samples
class CheckerBoard:
def __init__(self, batch_size):
self.batch_size = batch_size
def sample(self):
n = self.batch_size
n_points = 3*n
n_classes = 2
freq = 5
x = np.random.uniform(-(freq//2)*np.pi, (freq//2)*np.pi, size=(n_points, n_classes))
mask = np.logical_or(np.logical_and(np.sin(x[:,0]) > 0.0, np.sin(x[:,1]) > 0.0), \
np.logical_and(np.sin(x[:,0]) < 0.0, np.sin(x[:,1]) < 0.0))
y = np.eye(n_classes)[1*mask]
x0=x[:,0]*y[:,0]
x1=x[:,1]*y[:,0]
sample=np.concatenate([x0[...,None],x1[...,None]],axis=-1)
sqr=np.sum(np.square(sample),axis=-1)
idxs=np.where(sqr==0)
sample=np.delete(sample,idxs,axis=0)
# res=res+np.random.randn(*res.shape)*1
sample=torch.Tensor(sample)
sample=sample[0:n,:]
return sample
class Spiral:
def __init__(self, batch_size):
self.batch_size = batch_size
def sample(self):
n = self.batch_size
theta = np.sqrt(np.random.rand(n))*3*np.pi-0.5*np.pi # np.linspace(0,2*pi,100)
r_a = theta + np.pi
data_a = np.array([np.cos(theta)*r_a, np.sin(theta)*r_a]).T
x_a = data_a + 0.25*np.random.randn(n,2)
samples = np.append(x_a, np.zeros((n,1)), axis=1)
samples = samples[:,0:2]
return torch.Tensor(samples)
class Moon:
def __init__(self, batch_size):
self.batch_size = batch_size
def sample(self):
n = self.batch_size
x = np.linspace(0, np.pi, n // 2)
u = np.stack([np.cos(x) + .5, -np.sin(x) + .2], axis=1) * 10.
u += 0.5*np.random.normal(size=u.shape)
v = np.stack([np.cos(x) - .5, np.sin(x) - .2], axis=1) * 10.
v += 0.5*np.random.normal(size=v.shape)
x = np.concatenate([u, v], axis=0)
return torch.Tensor(x)
class DataSampler: # a dump data sampler
def __init__(self, dataset, batch_size, device):
self.num_sample = len(dataset)
self.dataloader = setup_loader(dataset, batch_size)
self.batch_size = batch_size
self.device = device
def sample(self):
data = next(self.dataloader)
return data[0].to(self.device)
class PriorSampler: # a dump prior sampler to align with DataSampler
def __init__(self, prior, batch_size, device):
self.prior = prior
self.batch_size = batch_size
self.device = device
def log_prob(self, x):
return self.prior.log_prob(x)
def sample(self):
return self.prior.sample([self.batch_size]).to(self.device)
def setup_loader(dataset, batch_size):
train_loader = DataLoaderX(dataset, batch_size=batch_size,shuffle=True,num_workers=0,drop_last=True)
# train_loader = DataLoaderX(dataset, batch_size=batch_size,shuffle=True,num_workers=4, pin_memory=True)
print("number of samples: {}".format(len(dataset)))
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/image_datasets.py#L52-L53
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/train_util.py#L166
while True:
yield from train_loader
class DataLoaderX(DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
def generate_celebA_dataset(opt,load_train=True):
if opt.problem_name=='celebA32': #Our own data preprocessing
transforms_list=[
transforms.Resize(32),
transforms.CenterCrop(32),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
]
elif opt.problem_name=='celebA64':
transforms_list=[ #Normal Data preprocessing
transforms.Resize([64,64]), #DSB type resizing
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
]
else:
raise RuntimeError()
if util.use_vp_sde(opt):
transforms_list+=[transforms.Lambda(lambda t: (t * 2) - 1),]
return datasets.ImageFolder(
root='data/celebA/img_align_celeba/',
transform=transforms.Compose(transforms_list)
)
def generate_mnist_dataset(opt,load_train=True):
transforms_list=[
transforms.Pad(2,fill=0), #left and right 2+2=4 padding
transforms.ToTensor(),
]
if util.use_vp_sde(opt):
transforms_list+=[transforms.Lambda(lambda t: (t * 2) - 1),]
return datasets.MNIST(
'data',
train= not opt.compute_NLL,
download=load_train,
transform=transforms.Compose(transforms_list)
)
def generate_cifar10_dataset(opt,load_train=True):
transforms_list=[
transforms.Resize(32),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(), #Convert to [0,1]
]
if util.use_vp_sde(opt):
transforms_list+=[transforms.Lambda(lambda t: (t * 2) - 1),]
return datasets.CIFAR10(
'data',
train= not opt.compute_NLL,
download=load_train,
transform=transforms.Compose(transforms_list)
)