-
Notifications
You must be signed in to change notification settings - Fork 9
/
util.py
489 lines (397 loc) · 17.3 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import os,sys,re
import numpy as np
import shutil
import termcolor
import pathlib
from scipy import linalg
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torchvision.utils as tu
from torch.nn.functional import adaptive_avg_pool2d
try:
from tqdm import tqdm
except ImportError:
# If not tqdm is not available, provide a mock version of it
def tqdm(x): return x
from ipdb import set_trace as debug
# convert to colored strings
def red(content): return termcolor.colored(str(content),"red",attrs=["bold"])
def green(content): return termcolor.colored(str(content),"green",attrs=["bold"])
def blue(content): return termcolor.colored(str(content),"blue",attrs=["bold"])
def cyan(content): return termcolor.colored(str(content),"cyan",attrs=["bold"])
def yellow(content): return termcolor.colored(str(content),"yellow",attrs=["bold"])
def magenta(content): return termcolor.colored(str(content),"magenta",attrs=["bold"])
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def is_image_dataset(opt):
return opt.problem_name in ['mnist','cifar10','celebA32','celebA64']
def is_toy_dataset(opt):
return opt.problem_name in ['gmm','checkerboard', 'moon-to-spiral']
def use_vp_sde(opt):
return opt.sde_type == 'vp'
def evaluate_stage(opt, stage, metrics):
""" Determine what metrics to evaluate for the current stage,
if metrics is None, use the frequency in opt to decide it.
"""
if metrics is not None:
return [k in metrics for k in ['FID', 'snapshot', 'ckpt']]
match = lambda freq: (freq>0 and stage%freq==0)
return [match(opt.FID_freq), match(opt.snapshot_freq), match(opt.ckpt_freq)]
def get_time(sec):
h = int(sec//3600)
m = int((sec//60)%60)
s = sec%60
return h,m,s
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def flatten_dim01(x):
# (dim0, dim1, *dim2) --> (dim0x1, *dim2)
return x.reshape(-1, *x.shape[2:])
def unflatten_dim01(x, dim01):
# (dim0x1, *dim2) --> (dim0, dim1, *dim2)
return x.reshape(*dim01, *x.shape[1:])
def compute_z_norm(zs, dt):
# Given zs.shape = [batch, timesteps, *z_dim], return E[\int 0.5*norm(z)*dt],
# where the norm is taken over z_dim, the integral is taken over timesteps,
# and the expectation is taken over batch.
zs = zs.reshape(*zs.shape[:2],-1)
return 0.5 * zs.norm(dim=2).sum(dim=1).mean(dim=0) * dt
def create_traj_sampler(trajs):
for traj in trajs:
yield traj
def get_load_it(load_name):
nums = re.findall('[0-9]+', load_name)
assert len(nums)>0
if 'stage' in load_name and 'dsm' in load_name:
return int(nums[-2])
return int(nums[-1])
def restore_checkpoint(opt, runner, load_name):
assert load_name is not None
print(green("#loading checkpoint {}...".format(load_name)))
if 'checkpoint_16.pth' in load_name:
# loading pre-trained NCSN++ from
# https://drive.google.com/drive/folders/1sP4GwvrYiI-sDPTp7sKYzsxJLGVamVMZ
assert opt.backward_net == 'ncsnpp'
with torch.cuda.device(opt.gpu):
checkpoint = torch.load(load_name)
model_ckpt, ema_params_ckpt = checkpoint['model'], checkpoint['ema']['shadow_params']
# load model
res = {k.replace('module.', 'net.') : v for k, v in model_ckpt.items()}
runner.z_b.load_state_dict(res) # Dont load key:sigmas.
print(green('#successfully loaded all the modules'))
# load ema
assert type(runner.ema_b.shadow_params) == list
runner.ema_b.shadow_params = [p.to(opt.device) for p in ema_params_ckpt]
print(green('#loading form ema shadow parameter for polices'))
else:
full_keys = ['z_f','optimizer_f','ema_f','z_b','optimizer_b','ema_b']
with torch.cuda.device(opt.gpu):
checkpoint = torch.load(load_name,map_location=opt.device)
ckpt_keys=[*checkpoint.keys()]
for k in ckpt_keys:
getattr(runner,k).load_state_dict(checkpoint[k])
if len(full_keys)!=len(ckpt_keys):
value = { k for k in set(full_keys) - set(ckpt_keys) }
print(green("#warning: does not load model for {}, check is it correct".format(value)))
else:
print(green('#successfully loaded all the modules'))
# Note: Copy the avergage parameter to policy. This seems to improve performance for
# DSM warmup training (yet not sure whether it's true for SB in general)
runner.ema_f.copy_to()
runner.ema_b.copy_to()
print(green('#loading form ema shadow parameter for polices'))
print(magenta("#######summary of checkpoint##########"))
def save_checkpoint(opt, runner, keys, stage_it, dsm_train_it=None):
checkpoint = {}
fn = opt.ckpt_path + "/stage_{0}{1}.npz".format(
stage_it, '_dsm{}'.format(dsm_train_it) if dsm_train_it is not None else ''
)
with torch.cuda.device(opt.gpu):
for k in keys:
checkpoint[k] = getattr(runner,k).state_dict()
torch.save(checkpoint, fn)
print(green("checkpoint saved: {}".format(fn)))
def save_toy_npy_traj(opt, fn, traj, n_snapshot=None, direction=None):
#form of traj: [bs, interval, x_dim=2]
fn_npy = os.path.join('results', opt.dir, fn+'.npy')
fn_pdf = os.path.join('results', opt.dir, fn+'.pdf')
lims = {
'gmm': [-17, 17],
'checkerboard': [-7, 7],
'moon-to-spiral':[-20, 20],
}.get(opt.problem_name)
if n_snapshot is None: # only store t=0
plt.scatter(traj[:,0,0],traj[:,0,1], s=5)
plt.xlim(*lims)
plt.ylim(*lims)
else:
total_steps = traj.shape[1]
sample_steps = np.linspace(0, total_steps-1, n_snapshot).astype(int)
fig, axs = plt.subplots(1, n_snapshot)
fig.set_size_inches(n_snapshot*6, 6)
color = 'salmon' if direction=='forward' else 'royalblue'
for ax, step in zip(axs, sample_steps):
ax.scatter(traj[:,step,0],traj[:,step,1], s=5, color=color)
ax.set_xlim(*lims)
ax.set_ylim(*lims)
ax.set_title('time = {:.2f}'.format(step/(total_steps-1)*opt.T))
fig.tight_layout()
plt.savefig(fn_pdf)
np.save(fn_npy, traj)
plt.clf()
def get_FID_npz_path(opt):
if opt.FID_ckpt is not None: return opt.FID_ckpt
return {
'cifar10': 'checkpoint/cifar10_fid_stat_local.npz',
}.get(opt.problem_name, None)
def snapshot(opt, img, stage, direction):
t=-1 if direction=='forward' else 0
n = 36 if opt.compute_FID else 24
img = img[0:n,t,...] if len(img.shape)==5 else img[0:n,...]
img=norm_data(opt, img) #Norm data to [0,1]
fn = os.path.join(
opt.eval_path,
direction,
'{}stage{}.png'.format('sample_' if opt.compute_FID else '', stage)
)
tu.save_image(img, fn, nrow = 6)
def save_generated_data(opt, x):
x = norm_data(opt,x)
x = torch.squeeze(x)
for i in range(x.shape[0]):
fn = os.path.join(opt.generated_data_path, 'img{}.jpg'.format(i))
tu.save_image(x[i,...], fn)
def compute_fid(opt, xTs):
FID_path = get_FID_npz_path(opt)
save_generated_data(opt, xTs.to(opt.device))
return get_fid(FID_path, opt.generated_data_path)
def exist_FID_ckpt(opt):
ckpt = get_FID_npz_path(opt)
return ckpt is not None and os.path.exists(ckpt)
def norm_data(opt,x):
if opt.problem_name=='mnist':
x=x.repeat(1,3,1,1)
_max=torch.max(torch.max(x,dim=-1)[0],dim=-1)[0][...,None,None]
_min=torch.min(torch.min(x,dim=-1)[0],dim=-1)[0][...,None,None]
x=(x-_min)/(_max-_min)
return x
def check_duplication(opt):
plt_dir='plots/'+opt.dir
ckpt_dir='checkpoint/'+opt.group+'/'+opt.name
runs_dir='runs/'+opt.log_fn
plt_flag=os.path.isdir(plt_dir)
ckpt_flag=os.path.isdir(ckpt_dir)
run_flag=os.path.isdir(runs_dir)
tot_flag= plt_flag or ckpt_flag or run_flag
print([plt_flag,ckpt_flag,run_flag])
if tot_flag:
decision=input('Exist duplicated folder, do you want to overwrite it? [y/n]')
if 'y' in decision:
try:
shutil.rmtree(plt_dir)
except:
pass
try:
shutil.rmtree(ckpt_dir)
except:
pass
try:
shutil.rmtree(runs_dir)
except:
pass
else:
sys.exit()
######################################################################################
## Copy of FID computation utils ##
## Ref: https://github.com/ermongroup/ncsnv2/blob/master/evaluation/fid_score.py, ##
## https://github.com/ermongroup/ncsnv2/blob/master/evaluation/inception.py, ##
######################################################################################
def imread(filename):
"""
Loads an image file into a (height, width, 3) uint8 ndarray.
"""
return np.asarray(Image.open(filename), dtype=np.uint8)[..., :3]
def get_activations(files, model, batch_size=50, dims=2048,
cuda=False, verbose=False):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : Batch size of images for the model to process at once.
Make sure that the number of samples is a multiple of
the batch size, otherwise some samples are ignored. This
behavior is retained to match the original FID score
implementation.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the number
of calculated batches is reported.
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
model.eval()
if batch_size > len(files):
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = len(files)
pred_arr = np.empty((len(files), dims))
for i in tqdm(range(0, len(files), batch_size)):
if verbose:
print('\rPropagating batch %d/%d' % (i + 1, batch_size),
end='', flush=True)
start = i
end = i + batch_size
images = np.array([imread(str(f)).astype(np.float32)
for f in files[start:end]])
# Reshape to (n_images, 3, height, width)
images = images.transpose((0, 3, 1, 2))
images /= 255
batch = torch.from_numpy(images).type(torch.FloatTensor)
if cuda:
batch = batch.cuda()
pred = model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.size(2) != 1 or pred.size(3) != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred_arr[start:end] = pred.cpu().data.numpy().reshape(pred.size(0), -1)
if verbose:
print(' done')
return pred_arr
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean)
def calculate_activation_statistics(files, model, batch_size=50,
dims=2048, cuda=False, verbose=False):
"""Calculation of the statistics used by the FID.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : The images numpy array is split into batches with
batch size batch_size. A reasonable batch size
depends on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the
number of calculated batches is reported.
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
"""
act = get_activations(files, model, batch_size, dims, cuda, verbose)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def _compute_statistics_of_path(path, model, batch_size, dims, cuda):
if path.endswith('.npz'):
f = np.load(path)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
path = pathlib.Path(path)
files = list(path.glob('*.jpg')) + list(path.glob('*.png'))
m, s = calculate_activation_statistics(files, model, batch_size,
dims, cuda)
return m, s
def calculate_fid_npz(path, root, name, batch_size=256, cuda=True, dims=2048):
"""Calculates the FID of two paths"""
from models.InceptionNet.inception_net import InceptionV3
if not os.path.exists(path):
raise RuntimeError('Invalid path: %s' % path)
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx])
if cuda:
model.cuda()
m1, s1 = _compute_statistics_of_path(path, model, batch_size,
dims, cuda)
if not os.path.exists(root):
os.makedirs(root)
np.savez(root+name, mu=m1, sigma=s1)
def calculate_fid_given_paths(paths, batch_size, cuda, dims):
"""Calculates the FID of two paths"""
for p in paths:
if not os.path.exists(p):
raise RuntimeError('Invalid path: %s' % p)
from models.InceptionNet.inception_net import InceptionV3
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx])
if cuda:
model.cuda()
m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size,
dims, cuda)
m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size,
dims, cuda)
fid_value = calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
def get_fid(path1, path2):
fid_value = calculate_fid_given_paths([path1, path2],
256,
True,
2048)
return fid_value
def get_fid_stats_path(args, config, download=True):
links = {
'CIFAR10': 'http://bioinf.jku.at/research/ttur/ttur_stats/fid_stats_cifar10_train.npz',
'LSUN': 'http://bioinf.jku.at/research/ttur/ttur_stats/fid_stats_lsun_train.npz'
}
if config.data.dataset == 'CIFAR10':
path = os.path.join(args.exp, 'datasets', 'cifar10_fid.npz')
if not os.path.exists(path):
if not download:
raise FileNotFoundError("no statistics file founded")
else:
import urllib
urllib.request.urlretrieve(
links[config.data.dataset], path
)
elif config.data.dataset == 'CELEBA':
path = os.path.join(args.exp, 'datasets', 'celeba_test_fid_stats.npz')
if not os.path.exists(path):
raise FileNotFoundError('no statistics file founded')
return path