forked from GajuuzZ/Human-Falling-Detect-Tracks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ActionsEstLoader.py
52 lines (43 loc) · 1.99 KB
/
ActionsEstLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import torch
import numpy as np
from Actionsrecognition.Models import TwoStreamSpatialTemporalGraph
from pose_utils import normalize_points_with_size, scale_pose
class TSSTG(object):
"""Two-Stream Spatial Temporal Graph Model Loader.
Args:
weight_file: (str) Path to trained weights file.
device: (str) Device to load the model on 'cpu' or 'cuda'.
"""
def __init__(self,
weight_file='./Models/TSSTG/tsstg-model.pth',
device='cuda'):
self.graph_args = {'strategy': 'spatial'}
self.class_names = ['Standing', 'Walking', 'Sitting', 'Lying Down',
'Stand up', 'Sit down', 'Fall Down']
self.num_class = len(self.class_names)
self.device = device
self.model = TwoStreamSpatialTemporalGraph(self.graph_args, self.num_class).to(self.device)
self.model.load_state_dict(torch.load(weight_file))
self.model.eval()
def predict(self, pts, image_size):
"""Predict actions from single person skeleton points and score in time sequence.
Args:
pts: (numpy array) points and score in shape `(t, v, c)` where
t : inputs sequence (time steps).,
v : number of graph node (body parts).,
c : channel (x, y, score).,
image_size: (tuple of int) width, height of image frame.
Returns:
(numpy array) Probability of each class actions.
"""
pts[:, :, :2] = normalize_points_with_size(pts[:, :, :2], image_size[0], image_size[1])
pts[:, :, :2] = scale_pose(pts[:, :, :2])
pts = np.concatenate((pts, np.expand_dims((pts[:, 1, :] + pts[:, 2, :]) / 2, 1)), axis=1)
pts = torch.tensor(pts, dtype=torch.float32)
pts = pts.permute(2, 0, 1)[None, :]
mot = pts[:, :2, 1:, :] - pts[:, :2, :-1, :]
mot = mot.to(self.device)
pts = pts.to(self.device)
out = self.model((pts, mot))
return out.detach().cpu().numpy()