-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathevaluate_uncertainty.py
347 lines (230 loc) · 11 KB
/
evaluate_uncertainty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import config as cf
import h5py
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import json
import os
import sys
import time
import argparse
import numpy as np
import datetime
#import utils_bn
from networks import *
from torch.autograd import Variable
from metric_OOD import eval_ood_measure
parser = argparse.ArgumentParser(description='PyTorch CIFAR-10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning_rate')
parser.add_argument('--dirsave_out', default='cifar10_0', type=str, help='where the checkpoint are save. ./checkpoint/dataset/dirsave_out')
parser.add_argument('--net_type', default='wide-resnet', type=str, help='model')
parser.add_argument('--depth', default=28, type=int, help='depth of model')
parser.add_argument('--widen_factor', default=10, type=int, help='width of model')
parser.add_argument('--dropout', default=0.3, type=float, help='dropout_rate')
parser.add_argument('--algo', default='LPBNN', type=str, help=' choose between LPBNN or BE')
parser.add_argument('--dataset', default='cifar10', type=str, help='dataset = [cifar10/cifar100]')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--testOnly', '-t', action='store_true', help='Test mode with the saved model')
args = parser.parse_args()
# Hyper Parameter settings
use_cuda = torch.cuda.is_available()
best_acc = 0
nb_models = 3 # For better statistical results you should test on several model not just one!
ensemble_size =4
start_epoch, num_epochs, batch_size, optim_type = cf.start_epoch, cf.num_epochs, cf.batch_size, cf.optim_type
# Data Uplaod
print('\n[Phase 1] : Data Preparation')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(cf.mean[args.dataset], cf.std[args.dataset]),
]) # meanstd transformation
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(cf.mean[args.dataset], cf.std[args.dataset]),
])
print("| Preparing CIFAR-10 dataset...")
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
num_classes = 10
print("| Preparing SVHN dataset...")
testset_OOD =torchvision.datasets.SVHN(root='./data', split='test', transform=transform_test, download=True)
#testset_OOD =torchvision.datasets.SVHN(root='./data', split='train', transform=transform_test, download=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=150, shuffle=False, num_workers=2)
testloader_OOD = torch.utils.data.DataLoader(testset_OOD, batch_size=150, shuffle=False, num_workers=2)
# Return network & file name
def getNetwork(args):
if (args.algo == 'BE'):
net = Wide_ResNet_BatchEnsemble(args.depth, args.widen_factor, args.dropout, num_classes,num_models=ensemble_size)
name_algo= 'BatchEnsemble'
print('| Building net type [wide-resnet BE]...')
elif (args.algo == 'LPBNN'):
net = Wide_ResNet_LPBNN(args.depth, args.widen_factor, args.dropout, num_classes, num_models=ensemble_size)
name_algo= 'LP-BNN'
print('| Building net type [wide-resnet LB-BNN]...')
else:
print('Error : Algo should be either [LPBNN / BE')
sys.exit(0)
file_name = 'wide-resnet-' + str(args.depth) + 'x' + str(args.widen_factor)
return net,file_name,name_algo
# Test only option
print('\n[Test Phase] : Model setup')
assert os.path.isdir('checkpoint'), 'Error: No checkpoint directory found!'
net, file_name,name_algo = getNetwork(args)
#global_path='./checkpoint/Labia/cifar10/batch_ensemble_latent_'
#global_path='./checkpoint/Labia/cifar10/batch_ensemble_ema_latent_'
global_path=args.dirsave_out
# Model
print('\n[Phase 2] : Model setup')
if use_cuda:
net.cuda()
net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
## PRINT NAME FOR CHECKING
print('----------------------------------------------------')
print(' CHECK THAT "bn" IS IN THE NAME OF BATCH NORM and just that!')
# TESTING
criterion = nn.CrossEntropyLoss()
def test(model,testloader):
model.eval()
test_loss = 0
correct = 0
BS = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
output = model(inputs)
if batch_idx == 0:
output_concat = output.clone()
target_concat = targets.clone()
# print('output_proba',output_proba)
else:
output_concat = torch.cat((output_concat, output), 0)
target_concat = torch.cat((target_concat, targets), 0)
return output_concat, target_concat
device = 'cpu'
if use_cuda:
device='cuda'
print(
'----------------------------------------------------------------------------------------------------------------')
print(
'----------------------------------------------------------------------------------------------------------------')
print(
'----------------------------------------------------------------------------------------------------------------')
step =1
correct_list=[]
auroc_list=[]
aupr_list=[]
fpr_list=[]
ece_list=[]
for step in range(nb_models):
print('EVALUTION of model number :',step+1)
print('EVALUTION SVNH')
output=torch.zeros(len(testloader_OOD.dataset),num_classes).to(device)
print('len(testloader_OOD.dataset)',len(testloader_OOD.dataset))
t=time.time()
checkpoint_PATH = global_path+str(step) + os.sep + file_name + '.t7'
print('loading ', step, ' =>', checkpoint_PATH)
checkpoint = torch.load(checkpoint_PATH)
net = checkpoint['net']
net.cuda()
output, target = test(net, testloader_OOD)
# EVALUTION
output_proba = output
pred = output.argmax(dim=1, keepdim=True)
target_onehot = torch.nn.functional.one_hot(target, num_classes)
# one_hot = torch.cuda.FloatTensor(target.size(0), nb_class, target.size(2), target.size(3)).zero_()
# target_onehot = one_hot.scatter_(1, target, 1)
correct = pred.eq(target.view_as(pred)).sum().item()
scores, _ = output_proba.max(1)
scores = scores.view(-1)
scores_notmnits=scores.clone()
labels0 = target.view(-1)
pred0 = pred.view(-1)
#metrics_uncertainty.update(pred0*0, 10 * torch.ones_like(labels0), scores)
#output_proba_score0 = output_proba
output_proba_score0 = scores.clone().cpu().data.numpy()
output_proba_score_NOTINDISTRIB = output_proba_score0
print('time 1 : ', time.time() - t)
_ = plt.hist(output_proba_score_NOTINDISTRIB, bins=20)
plt.title("Histogram with 'auto' bins")
plt.savefig('Histogram_OOD_'+name_algo+'.png')
plt.close()
'''testloader_NOTmnist = torch.utils.data.DataLoader(testset, batch_size=N,
shuffle=False, num_workers=2)'''
h5f = h5py.File('result_ODD_'+name_algo+'.hdf5', 'w')
h5f.create_dataset('proba_score', data=output_proba_score_NOTINDISTRIB)
h5f.close()
print(
'----------------------------------------------------------------------------------------------------------------')
print(
'----------------------------------------------------------------------------------------------------------------')
print(
'----------------------------------------------------------------------------------------------------------------')
print('EVALUTION CIFAR10')
print('len(testloader.dataset)',len(testloader.dataset))
output=torch.zeros(len(testloader.dataset),num_classes).to(device)
t=time.time()
checkpoint_PATH = global_path+str(step) + os.sep + file_name + '.t7'
print('loading ', step, ' =>', checkpoint_PATH)
checkpoint = torch.load(checkpoint_PATH)
net = checkpoint['net']
net.cuda()
output, target = test(net, testloader)
# EVALUTION
output_proba = output
pred = output.argmax(dim=1, keepdim=True)
target_onehot = torch.nn.functional.one_hot(target, num_classes)
# one_hot = torch.cuda.FloatTensor(target.size(0), nb_class, target.size(2), target.size(3)).zero_()
# target_onehot = one_hot.scatter_(1, target, 1)
correct = pred.eq(target.view_as(pred)).sum().item()
scores, _ = output_proba.max(1)
scores = scores.view(-1)
labels0 = target.view(-1)
pred0=pred.view(-1)
print('check label max',labels0.max())
#|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
conf=(torch.cat((scores_notmnits, scores), 0) )
label=(torch.cat((10 * torch.ones_like(scores_notmnits.view(-1)).long(), labels0.long()), 0) )
pred=(torch.cat((0 * torch.ones_like(scores_notmnits.view(-1)).long(), pred0.long()), 0) )
res = eval_ood_measure(conf, label,pred)
auroc, aupr, fpr, ece = res
auroc_list.append(auroc)
aupr_list.append(aupr)
fpr_list.append(fpr)
ece_list.append(ece)
#|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
#metrics_uncertainty.update(pred0, labels0, scores)
#output_proba_score0=output_proba
output_proba_score0=scores.clone().cpu().data.numpy()
output_proba_score_INDISTRIB=output_proba_score0
correct_list.append(correct)
_ = plt.hist(output_proba_score_INDISTRIB, bins=20)
plt.title("Histogram with 'auto' bins")
plt.savefig('Histogram_ID_'+name_algo+'.png')
plt.close()
print('time 2 :',time.time()-t)
correct_final=np.mean(np.array(correct_list))
print('correct_list',correct_list)
print('correct = ',correct_final/ len(testloader.dataset))
print('error = ',1-correct_final/ len(testloader.dataset))
print('----------------------------------------------------------------------------------------------------------------')
print('----------------------------------------------------------------------------------------------------------------')
print('----------------------------------------------------------------------------------------------------------------')
#scores_test=metrics_uncertainty.get_scores()
'''for st in scores_test:
print(st)
print(scores_test[st])
print("----------------------------------------------------------------")'''
print('----------------------------------------------------------------------------------------------------------------')
print("mean auroc = ", np.mean(np.array(auroc_list)), "mean aupr = ", np.mean(np.array(aupr_list)), " mean fpr = ", np.mean(np.array(fpr_list)), " mean ECE = ", np.mean(np.array(ece_list)))