
1
Presentation:: © Fraunhofer IOSB – CC-by-SA
Map data: © Openstreetmap contributers

Sven Geggus

Towards a more readable Openstreetmap
based world map for westerners

2
Presentation:: © Fraunhofer IOSB – CC-by-SA
Map data: © Openstreetmap contributers

Motivation

 Looking at areas where Latin script is not the norm Openstreetmap
based maps are mostly unreadable for westerners.

 The reason for this is our rule, that names of geographical objects are to
be acquired in local language.

 In contrast to conventional spatial dataset Openstreetmap data does
often contain additional localized data, which is unfortunately not yet
often used when rendering maps.

3
Presentation:: © Fraunhofer IOSB – CC-by-SA
Map data: © Openstreetmap contributers

Localized objects contained in Openstreetmap data

name => Deutschland
...
int_name => Deutschland
name:de => Deutschland
name:en => Germany
name:ar أأألمانيا <=
name:ja =>ドイツ
name:ru => Германия
name:he גרמניה <=

name ישראל <=
...
int_name => Israel
name:de => Israel
name:en => Israel
name:ar إسرائيل <=
name:ja => イスラエル
name:ru => Израиль
name:he => ישראל

4
Presentation:: © Fraunhofer IOSB – CC-by-SA
Map data: © Openstreetmap contributers

Writing systems of the world

© Nicholas George Shanks/Wikipedia – CC-by-SA

5
Presentation:: © Fraunhofer IOSB – CC-by-SA
Map data: © Openstreetmap contributers

Openstreetmap Carto Style (original)

6
Presentation:: © Fraunhofer IOSB – CC-by-SA
Map data: © Openstreetmap contributers

Openstreetmap Carto Style (with German localization)

7
Presentation:: © Fraunhofer IOSB – CC-by-SA
Map data: © Openstreetmap contributers

Main objective

 Making the map readable for westerners by using Latin script.

 Use localized data from Openstreetmap itself whenever possible.

 Use other localization methods like transcription or transliteration,
if the objects from Openstreetmap do not contain localized data.

8
Presentation:: © Fraunhofer IOSB – CC-by-SA
Map data: © Openstreetmap contributers

Approach using PostgreSQL „stored procedures“

Advantage:

 Localization is renderer independent. It is possible to use any render
supporting PostgreSQL as a data-source (Mapnik, Mapserver,
Geoserver, …).

Disadvantage:

 Localization functions are only available if PostgreSQL is used as a data-
source. It is impossible to localize other data sources like Shapefiles etc..

9

Implementation

 PL/pgSQL functions available are

osml10n_get_placename
osml10n_get_streetname
osml10n_get_name_without_brackets

 Despite the fact that this is currently used for German language only, the
target language (available as a function parameter) might be any
language using Latin script.

 A convenient way is to hide this functions behind database views. This
will create virtual tables which will enable usage of existing cartographic
styles with minimal changes (using another column for “name”).

10

Implementation

Making the decision which name to use:

 If data does contain the name of the target language
(e.g. name:de in German language) use it.

 If name is written in Latin script, just use it.

 Otherwise use the international name (int_name)

 or English name (name:en) as an alternative

 If none of the above is true use transcription.

11

Transcription and transliteration

 Transliteration means a reversible, character by character conversion of
other alphabets into Latin.

 Transcription shall allow a non mother-tongue speaker a reasonable
pronunciation and is not necessarily reversible.

⇒ Transcription is what we need!

12

 Classes of writing systems and transcription

 Alphabets (e.g. Latin, Greek, Cyrillic, Arabic, …)

 Easy transcription

 Syllabaries (e.g. Kana)

 Relatively easy transcription

 Logographic writing systems (e.g. Chinese)

 Transcription is only possible by language

 Hybrid forms (e.g. Thai, Hangeul, …)

 Easy transcription

13

Known problems of transcription

 Being a logographic alphabet, the transcription of Chinese characters has
to be based on the place of the geographical objects. Using PostGIS we
are able to determine the country where an object is located. This way it
has been possible to implement a solution for this problem in Japan.

 Thailand usually uses Royal Thai General System of Transcription (RTGS)
on road signs etc. Unfortunately the ICU library uses ISO11940 which is
not widely used. I don’t know of a FOSS library implementing RTGS.

 Some writing systems (Arabic, Hebrew) do not add all vocals to written
words. Instead they are added by the reader. Transliteration is therefore
often incomplete.
Example: Transliteration of تههههههران (Teheran) using ICU gives „thr n“ạ

14

Current implementation of Transcription

 Usage of the free library International Components for Unicode (ICU)
which is providing a Any-Latin transliteration.

 A PostgreSQL stored procedure (osml10n_translit) providing this
function from ICU has been implemented.

 Place dependent use of other transcription libraries:

 Currently transcription of Chinese characters (called kanji in Japanese)
is performed by KAKASI library if the object to be rendered is located
in Japan.

 Extendable to other writing systems and countries

 Usage of other transcription libraries by writing system (not place) can be
added easily.

15

 Using different glyphs inside a single label

Issue:

 There is no single font which contains all glyphs in persistent good
quality. In our multilingual map this is a problem in cases where local
names are to appear in parenthesis, because renderers are usually unable
to change a font inside a single label.

 As a compromise the current code will render local names in parenthesis
only if labels use Latin, Greek or Cyrillic character sets.

Possible resolution:

 It might be possible to produce a free “best-of” font using good quality
glyphs from various sources.

 It might be possible to enhance renderers to use different fonts based on
the character set of the glyph which is about to get rendered.

16

Political problems in map localization

 Many regions of the world have been part of other countries in the past.
Examples are former colonies or German settlement areas in eastern
Europe.

 As an example even the smallest villages in Poland, Alsace and Lorraine
have German names. However, often nobody knows if they are still in
widespread use today. In a worst-case scenario, their usage will offend
people.

 Du to the lack of an alternative we hope, that mappers will only acquire
names which are still used (or use old_name respectively).

 Currently our map style is using a compromise:
Always use the current local name in parenthesis.
Example: Stettin (Szczecin)

17

Prospect and possible enhancements

 Technical solution of the problem to render glyphs from different writing
systems in a single label.

 Addition of more and/or better suited libraries for transcription

 More fine grained distinction of transcription algorithms by place
and/or writing system.

 Implement street abbreviation code for all common languages (we
currently have German, English, Russian and Ukrainian).

 Add suggestions from the audience (especially from native speakers)

Code: https://github.com/giggls/mapnik-german-l10n

Please send pull requests :)

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Inhalt/Titel durch Klicken hinzufügen
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17

