-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
78 lines (57 loc) · 2.66 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import cv2
import mediapipe as mp
import numpy as np
import Hand_Position as hp
import music
import cProfile
import re
def main():
counter = 0
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
# For static images:
comp = music.composition(tempo = 180, volume = 1)
cap = cv2.VideoCapture(0)
with mp_hands.Hands(
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
break
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = hands.process(image)
if counter % 8 == 0:
# Draw the hand annotations on the image.
image.flags.writeable = True
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
coordinates = hp.get_params(hand_landmarks)
# FOR ADVAIT !!! the points [x,y] come scaled [0,1] here so how could we run a small sound gennerating function on this?
grid_values = hp.gridify(coordinates)
note = hp.location_to_note(grid_values)
comp.play_note(note)
#comp.export_full()
# grid values just gives the discrete string based on coordiates ^
coordinates_absolute = hp.ratio_to_pixel(coordinates, image.shape)
# FOR ADVAIT !!! the points [x,y] come in terms of pixels here so which [x,y] pair would be better?
mp_drawing.draw_landmarks(
image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
hp.label_params(image, coordinates_absolute, grid_values)
# the functions above are responsible for adding the markers and the text to the image in that order.
cv2.imshow('MediaPipe Hands', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
#if __name__ == '__main__':
main()
cProfile.run('main()')