forked from Vanint/SADE-AgnosticLT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_training_cifar.py
439 lines (352 loc) · 16.8 KB
/
test_training_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import argparse
import os
import torch
from tqdm import tqdm
from pathlib import Path
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
import numpy as np
from parse_config import ConfigParser
import torch.nn.functional as F
import torch
import random
import numpy as np
import os, sys
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Dataset, Sampler
from base import BaseDataLoader
from PIL import Image
from PIL import ImageFilter
from data_loader.imbalance_cifar import IMBALANCECIFAR100
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class AverageMeters(object):
def __init__(self, size):
self.meters = [AverageMeter(i) for i in range(size)]
def update(self, idxs, vals):
for i, v in zip(idxs, vals):
self.meters[i].update(v)
def get_avgs(self):
return np.array([m.avg for m in self.meters])
def get_sums(self):
return np.array([m.sum for m in self.meters])
def get_cnts(self):
return np.array([m.count for m in self.meters])
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
class BalancedSampler(Sampler):
def __init__(self, buckets, retain_epoch_size=False):
for bucket in buckets:
random.shuffle(bucket)
self.bucket_num = len(buckets)
self.buckets = buckets
self.bucket_pointers = [0 for _ in range(self.bucket_num)]
self.retain_epoch_size = retain_epoch_size
def __iter__(self):
count = self.__len__()
while count > 0:
yield self._next_item()
count -= 1
def _next_item(self):
bucket_idx = random.randint(0, self.bucket_num - 1)
bucket = self.buckets[bucket_idx]
item = bucket[self.bucket_pointers[bucket_idx]]
self.bucket_pointers[bucket_idx] += 1
if self.bucket_pointers[bucket_idx] == len(bucket):
self.bucket_pointers[bucket_idx] = 0
random.shuffle(bucket)
return item
def __len__(self):
if self.retain_epoch_size:
return sum([len(bucket) for bucket in self.buckets])
else:
return max([len(bucket) for bucket in self.buckets]) * self.bucket_num
class GaussianBlur(object):
"""Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709"""
def __init__(self, sigma=[.1, 2.]):
self.sigma = sigma
def __call__(self, x):
sigma = random.uniform(self.sigma[0], self.sigma[1])
x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
return x
class LT_Dataset(Dataset):
def __init__(self, root, txt, transform=None):
self.img_path = []
self.labels = []
self.transform = transform
with open(txt) as f:
for line in f:
self.img_path.append(os.path.join(root, line.split()[0]))
self.labels.append(int(line.split()[1]))
self.targets = self.labels # Sampler needs to use targets
def __len__(self):
return len(self.labels)
def __getitem__(self, index):
path = self.img_path[index]
label = self.labels[index]
with open(path, 'rb') as f:
sample = Image.open(f).convert('RGB')
if self.transform is not None:
sample = self.transform(sample)
# return sample, label, path
return sample, label
class TwoCropsTransform:
"""Take two random crops of one image as the query and key."""
def __init__(self, base_transform):
self.base_transform = base_transform
def __call__(self, x):
q = self.base_transform(x)
k = self.base_transform(x)
return [q, k]
class TestAgnosticImbalanceCIFAR100DataLoader(DataLoader):
"""
Imbalance Cifar100 Data Loader
"""
def __init__(self, data_dir, batch_size, shuffle=True, num_workers=1, training=True, balanced=False, retain_epoch_size=True, imb_type='exp', imb_factor=0.01, test_imb_factor=0, reverse=False):
normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010])
train_trsfm = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
test_trsfm = transforms.Compose([
transforms.ToTensor(),
normalize,
])
test_dataset = datasets.CIFAR100(data_dir, train=False, download=True, transform=test_trsfm) # test set
if training:
dataset = IMBALANCECIFAR100(data_dir, train=True, download=True, transform=train_trsfm, imb_type=imb_type, imb_factor=imb_factor)
val_dataset = test_dataset
else:
dataset = IMBALANCECIFAR100(data_dir, train=True, download=True, transform=train_trsfm, imb_type=imb_type, imb_factor=test_imb_factor, reverse=reverse)
train_dataset = IMBALANCECIFAR100(data_dir, train=False, download=True, transform= TwoCropsTransform(train_trsfm), imb_type=imb_type, imb_factor=test_imb_factor, reverse=reverse)
val_dataset = IMBALANCECIFAR100(data_dir, train=False, download=True, transform=test_trsfm, imb_type=imb_type, imb_factor=test_imb_factor, reverse=reverse)
self.dataset = dataset
self.train_dataset = train_dataset
self.val_dataset = val_dataset
num_classes = len(np.unique(dataset.targets))
assert num_classes == 100
cls_num_list = [0] * num_classes
for label in dataset.targets:
cls_num_list[label] += 1
self.cls_num_list = cls_num_list
self.shuffle = shuffle
self.init_kwargs = {
'batch_size': batch_size,
'num_workers': num_workers
}
super().__init__(dataset=self.dataset, **self.init_kwargs) # Note that sampler does not apply to validation set
def train_set(self):
return DataLoader(dataset=self.train_dataset, shuffle=True, **self.init_kwargs)
def test_set(self):
return DataLoader(dataset=self.val_dataset, shuffle=False, **self.init_kwargs)
def mic_acc_cal(preds, labels):
if isinstance(labels, tuple):
assert len(labels) == 3
targets_a, targets_b, lam = labels
acc_mic_top1 = (lam * preds.eq(targets_a.data).cpu().sum().float() \
+ (1 - lam) * preds.eq(targets_b.data).cpu().sum().float()) / len(preds)
else:
acc_mic_top1 = (preds == labels).sum().item() / len(labels)
return acc_mic_top1
def main(config):
logger = config.get_logger('test')
# build model architecture
model = config.init_obj('arch', module_arch)
#logger.info(model)
# run training data here just for obtain indexs for head/medium/tail classes
train_data_loader = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size=128,
shuffle=False,
training=True,
num_workers=8,
imb_factor=config['data_loader']['args']['imb_factor']
)
train_cls_num_list = train_data_loader.cls_num_list
#b = np.load("../data/shot_list.npy")
train_cls_num_list=torch.tensor(train_cls_num_list)
many_shot = train_cls_num_list > 100
few_shot =train_cls_num_list <20
medium_shot =~many_shot & ~few_shot
num_classes = config._config["arch"]["args"]["num_classes"]
distrb = {
'uniform': (1,False),
'forward50': (0.02, False),
'forward25': (0.04, False),
'forward10':(0.1, False),
'forward5': (0.2, False),
'forward2': (0.5, False),
'backward50': (0.02, True),
'backward25': (0.04, True),
'backward10': (0.1, True),
'backward5': (0.2, True),
'backward2': (0.5, True),
}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info('Loading checkpoint: {} ...'.format(config.resume))
checkpoint = torch.load(config.resume)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for testing
model = model.to(device)
weight_record_list=[]
performance_record_list=[]
test_distribution_set = ["forward50", "forward25", "forward10", "forward5", "forward2", "uniform", "backward2", "backward5", "backward10", "backward25", "backward50"]
for test_distribution in test_distribution_set:
print(test_distribution)
data_loader = TestAgnosticImbalanceCIFAR100DataLoader(
config['data_loader']['args']['data_dir'],
batch_size=128,
shuffle=False,
training=False,
num_workers=2,
test_imb_factor=distrb[test_distribution][0],
reverse=distrb[test_distribution][1]
)
train_data_loader= data_loader.train_set()
valid_data_loader = data_loader.test_set()
num_classes = config._config["arch"]["args"]["num_classes"]
aggregation_weight = torch.nn.Parameter(torch.FloatTensor(3), requires_grad=True)
aggregation_weight.data.fill_(1/3)
optimizer = config.init_obj('optimizer', torch.optim, [aggregation_weight])
for k in range(config["epochs"]):
weight_record = test_training(train_data_loader, config, model, aggregation_weight, optimizer, args)
if weight_record[0]<0.05 or weight_record[1]<0.05 or weight_record[2]<0.05:
break
print("Aggregation weight: Expert 1 is {0:.2f}, Expert 2 is {1:.2f}, Expert 3 is {2:.2f}".format(weight_record[0], weight_record[1], weight_record[2]))
weight_record_list.append(weight_record)
record = test_validation(valid_data_loader, model, num_classes, aggregation_weight, device, many_shot, medium_shot, few_shot)
performance_record_list.append(record)
print('\n')
print('='*25, ' Final results ', '='*25)
print('\n')
i = 0
print('Top-1 accuracy on many-shot, medium-shot, few-shot and all classes:')
for txt in performance_record_list:
print(test_distribution_set[i]+'\t')
print(*txt)
i+=1
i=0
print('\n')
print('Aggregation weights of three experts:')
for txt1 in weight_record_list:
print(test_distribution_set[i]+'\t')
print(*txt1)
i+=1
def test_training(train_data_loader, config, model, aggregation_weight, optimizer, args):
model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
losses = AverageMeter('Loss', ':.4e')
progress = ProgressMeter(
len(train_data_loader),
[losses])
cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
for i, (data, _) in enumerate(tqdm(train_data_loader)):
data[0] = data[0].to(device)
data[1] = data[1].to(device)
output0 = model(data[0])
output1 = model(data[1])
expert1_logits_output0 = output0['logits'][:,0,:]
expert2_logits_output0 = output0['logits'][:,1,:]
expert3_logits_output0 = output0['logits'][:,2,:]
expert1_logits_output1 = output1['logits'][:,0,:]
expert2_logits_output1 = output1['logits'][:,1,:]
expert3_logits_output1 = output1['logits'][:,2,:]
aggregation_softmax = torch.nn.functional.softmax(aggregation_weight) # softmax for normalization
aggregation_output0 = aggregation_softmax[0].cuda() * expert1_logits_output0 + aggregation_softmax[1].cuda() * expert2_logits_output0 + aggregation_softmax[2].cuda() * expert3_logits_output0
aggregation_output1 = aggregation_softmax[0].cuda() * expert1_logits_output1 + aggregation_softmax[1].cuda() * expert2_logits_output1 + aggregation_softmax[2].cuda() * expert3_logits_output1
softmax_aggregation_output0 = F.softmax(aggregation_output0, dim=1)
softmax_aggregation_output1 = F.softmax(aggregation_output1, dim=1)
# SSL loss: similarity maxmization
cos_similarity = cos(softmax_aggregation_output0, softmax_aggregation_output1).mean()
ssl_loss = cos_similarity
loss = - ssl_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.update(ssl_loss, data[0].shape[0])
aggregation_softmax = torch.nn.functional.softmax(aggregation_weight, dim=0).detach().cpu().numpy()
return np.round(aggregation_softmax[0], decimals=2), np.round(aggregation_softmax[1], decimals=2), np.round(aggregation_softmax[2], decimals=2)
def test_validation(data_loader, model, num_classes, aggregation_weight, device, many_shot, medium_shot, few_shot):
model.eval()
aggregation_weight.requires_grad = False
confusion_matrix = torch.zeros(num_classes, num_classes).cuda()
total_logits = torch.empty((0, num_classes)).cuda()
total_labels = torch.empty(0, dtype=torch.long).cuda()
with torch.no_grad():
for i, (data, target) in enumerate(tqdm(data_loader)):
data, target = data.to(device), target.to(device)
output = model(data)
expert1_logits_output = output['logits'][:,0,:]
expert2_logits_output = output['logits'][:,1,:]
expert3_logits_output = output['logits'][:,2,:]
aggregation_softmax = torch.nn.functional.softmax(aggregation_weight) # softmax for normalization
aggregation_output = aggregation_softmax[0] * expert1_logits_output + aggregation_softmax[1] * expert2_logits_output + aggregation_softmax[2] * expert3_logits_output
for t, p in zip(target.view(-1), aggregation_output.argmax(dim=1).view(-1)):
confusion_matrix[t.long(), p.long()] += 1
total_logits = torch.cat((total_logits, aggregation_output))
total_labels = torch.cat((total_labels, target))
probs, preds = F.softmax(total_logits.detach(), dim=1).max(dim=1)
# Calculate the overall accuracy and F measurement
eval_acc_mic_top1= mic_acc_cal(preds[total_labels != -1],
total_labels[total_labels != -1])
acc_per_class = confusion_matrix.diag()/confusion_matrix.sum(1)
acc = acc_per_class.cpu().numpy()
many_shot_acc = acc[many_shot].mean()
medium_shot_acc = acc[medium_shot].mean()
few_shot_acc = acc[few_shot].mean()
print("Many-shot {0:.2f}, Medium-shot {1:.2f}, Few-shot {2:.2f}, All {3:.2f}".format(many_shot_acc * 100, medium_shot_acc * 100,
few_shot_acc * 100, eval_acc_mic_top1* 100))
return np.round(many_shot_acc * 100, decimals=2), np.round(medium_shot_acc * 100, decimals=2), np.round(few_shot_acc * 100, decimals=2), np.round(eval_acc_mic_top1 * 100, decimals=2)
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args.add_argument('--epochs', default=1, type=int,
help='indices of GPUs to enable (default: all)')
config = ConfigParser.from_args(args)
main(config)