-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3Sum.py
41 lines (32 loc) · 1.2 KB
/
3Sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
Maybe optimal, which is O(n^2), but too complex and redundant.
Just choose target, and shrink boundaries one by one, starting from both edges.
"""
class Solution:
def sortedTwoSum(self, nums: List[int], target: int) -> List[int]:
waitings = {}
result = []
for i in range(len(nums)):
complement = target - nums[i]
if nums[i] in waitings and waitings[nums[i]]:
result.append([complement, nums[i]])
waitings[nums[i]] = False
elif nums[i] not in waitings:
waitings[complement] = True
return result
def threeSum(self, nums: List[int]) -> List[List[int]]:
result = []
sorted_nums = sorted(nums)
prev = None
for i in range(len(sorted_nums)):
if sorted_nums[i] >= 0:
break
if sorted_nums[i] == prev:
continue
target = sorted_nums[i]
twosum_result = self.sortedTwoSum(sorted_nums[i+1:], target*-1)
result += [[target] + l for l in twosum_result]
prev = sorted_nums[i]
if sorted_nums.count(0) >= 3:
result.append([0, 0, 0])
return result