forked from azureyes/CNN_AutoTrader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimluateTrade.py
311 lines (259 loc) · 10.1 KB
/
SimluateTrade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 14 17:02:07 2018
@author: Administrator
"""
import tushare as ts
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import random
def WeightVariable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def BiasVariable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def Conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def MaxPool2x2(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
#输入指数代码
indexCode = input('Input Code:')
#股票或者指数
type = input('1-Stock(Default) 2-Index:')
if type=='2':
isIndex = True
else:
isIndex = False
defaultStartDate = '1997-01-01'
defaultEndDate = '2005-01-01'
#输入开始日期
startDate = input('Input Start Date (%s as Default):' %defaultStartDate)
#输入结束日期
endDate = input('Input End Date (%s as Default):' %defaultEndDate)
if startDate=='':
startDate=defaultStartDate
if endDate=='':
endDate=defaultEndDate
#定义CNN
xs = tf.placeholder(tf.float32, [None, 80])
ys = tf.placeholder(tf.float32, [None, 2])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 1, 16, 5])
##conv2d layer =1#
W_conv1 = WeightVariable([1,2,5,10])
b_conv1 = BiasVariable([10])
h_conv1 = tf.nn.relu(Conv2d(x_image, W_conv1)+b_conv1)
h_pool1 = MaxPool2x2(h_conv1)
##conv2d layer = 2#
W_conv2 = WeightVariable([1,2,10,20])
b_conv2 = BiasVariable([20])
h_conv2 = tf.nn.relu(Conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = MaxPool2x2(h_conv2)
#conv2d layer = 3#
W_conv3 = WeightVariable([1,2,20,40])
b_conv3 = BiasVariable([40])
h_conv3 = tf.nn.relu(Conv2d(h_pool2, W_conv3) + b_conv3)
h_pool3 = MaxPool2x2(h_conv3)
#conv2d layer = 4#
W_conv4 = WeightVariable([1,2,40,80])
b_conv4 = BiasVariable([80])
h_conv4 = tf.nn.relu(Conv2d(h_pool3, W_conv4) + b_conv4)
h_pool4 = MaxPool2x2(h_conv4)
## full connect layer =1#
W_fc1 = WeightVariable([1*1*80, 32])
b_fc1 = BiasVariable([32])
h_pool4_flat = tf.reshape(h_pool4, [-1, 1*1*80])
h_fc1 = tf.nn.relu(tf.matmul(h_pool4_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = WeightVariable([32, 2])
b_fc2 = BiasVariable([2])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(tf.clip_by_value(prediction, 1e-7, 1.0)),
reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
saver = tf.train.Saver()
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
ckpt = tf.train.get_checkpoint_state('NetworkSaver/')
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print('Network Restore ok! ...')
df = ts.get_k_data(indexCode, index=isIndex, start=startDate, end=endDate)
del df['date']
del df['code']
totalline = len(df)
if totalline<65:
print('Too few data, cannot sim trading!')
exit()
KDAYS = 16
groundTruthList = []
feeddatalist = []
for i in range(0, totalline-KDAYS-1):
#groundTruthList.append(float(df['close'][i+KDAYS]) / float(df['close'][i+KDAYS-1]))
groundTruthList.append(float(df['open'][i+KDAYS+1]) / float(df['open'][i+KDAYS]))
kdatapart = df[i:i+KDAYS]
kdatapart = kdatapart.reset_index(drop=True)
lowlist = []
highlist = []
volumelist = []
feeddata = []
lowpart = kdatapart['low']
highpart = kdatapart['high']
volpart = kdatapart['volume']
openpart = kdatapart['open']
closepart = kdatapart['close']
for j in range(0, len(kdatapart)):
lowlist.append(float(lowpart[j]))
highlist.append(float(highpart[j]))
volumelist.append(float(volpart[j]))
low_min = min(lowlist)
low_max = max(highlist)
volume_min = min(volumelist)
volume_max = max(volumelist)
for j in range(0, len(kdatapart)):
fopen = float(openpart[j])
fclose = float(closepart[j])
fhigh = float(highpart[j])
flow = float(lowpart[j])
fvolume = float(volpart[j])
unified_open = (fopen-low_min)/(low_max-low_min)
unified_close = (fclose-low_min)/(low_max-low_min)
unified_high = (fhigh-low_min)/(low_max-low_min)
unified_low = (flow-low_min)/(low_max-low_min)
unified_vol = (fvolume-volume_min)/(volume_max-volume_min)
feeddata.append(unified_open)
feeddata.append(unified_close)
feeddata.append(unified_high)
feeddata.append(unified_low)
feeddata.append(unified_vol)
feeddatalist.append(feeddata)
benchmark_netvalue = 1.0
simtrade_netvalue = 1.0
simtrade_poslevel = 0.0
benchmark_netvalue_list = []
simtrade_netvalue_list = []
upPoss_list = []
alpha_list = []
has_position = False
predictRight = 0.0
predictTotal = 0.000001
BUY_LINE = 0.70
BUY_LINE_CLUSTER = [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, -1]
HAS_POSITION_CLUSTER = [False, False, False, False, False, False, False, False, False, False]
NET_VALUE_CLUSTER = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
NET_VALUE_LIST_CLUSTER = [[], [], [], [], [], [], [], [], [], []]
LOSE_WEIGHT_CLUSTER = [0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001]
WIN_WEIGHT_CLUSTER = [0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001]
TRADE_DAYS_CLUSTER = [0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001]
CLUSTER_COUNT = len(BUY_LINE_CLUSTER)
TRADE_COST = 0.00025
TAX_COST = 0.001
LOSE_WEIGHT = 0.00001
WIN_WEIGHT = 0.0
HIT_COUNT = 0.0
TOTAL_COUNT = 0.00001
for i in range(0, len(groundTruthList)):
growth = groundTruthList[i]
feeddata = feeddatalist[i]
inputData = np.array(feeddata).reshape(1, KDAYS*5)
currPred = sess.run(prediction, feed_dict={xs:inputData, keep_prob:1})
upPoss = currPred[0][0]
upPoss_list.append(upPoss)
newGrowth = growth-1.0
if upPoss>=BUY_LINE and newGrowth>0.0:
predictRight += 1.0
if upPoss>=BUY_LINE and newGrowth>0.0:
WIN_WEIGHT+=newGrowth*simtrade_netvalue
if upPoss>=BUY_LINE and newGrowth<0.0:
LOSE_WEIGHT+=(-newGrowth)*simtrade_netvalue
TOTAL_COUNT+=1.0
if upPoss>=BUY_LINE:
HIT_COUNT+=1.0
benchmark_netvalue = benchmark_netvalue * growth
benchmark_netvalue_list.append(benchmark_netvalue)
if has_position==False:
if upPoss>BUY_LINE:
has_position=True
simtrade_netvalue -= simtrade_netvalue * TRADE_COST
else:
if upPoss<BUY_LINE:
if has_position==True:
simtrade_netvalue -= simtrade_netvalue * TRADE_COST
simtrade_netvalue -= simtrade_netvalue * TAX_COST
has_position=False
if has_position==True:
simtrade_netvalue = simtrade_netvalue * growth
if upPoss>=BUY_LINE:
predictTotal += 1.0
#calc cluster
for j in range(0, CLUSTER_COUNT):
buyLine = BUY_LINE_CLUSTER[j]
if buyLine == -1:
buyLine = random.random()
upPoss = random.random()
if upPoss>=buyLine and newGrowth>0.0:
WIN_WEIGHT_CLUSTER[j]+=newGrowth*NET_VALUE_CLUSTER[j]
if upPoss>=buyLine and newGrowth<0.0:
LOSE_WEIGHT_CLUSTER[j]+=(-newGrowth)*NET_VALUE_CLUSTER[j]
if upPoss>=buyLine:
TRADE_DAYS_CLUSTER[j]+=1.0
if HAS_POSITION_CLUSTER[j]==False:
if upPoss>buyLine:
HAS_POSITION_CLUSTER[j]=True
NET_VALUE_CLUSTER[j] -= NET_VALUE_CLUSTER[j] * TRADE_COST
else:
if upPoss<buyLine:
if HAS_POSITION_CLUSTER[j]==True:
NET_VALUE_CLUSTER[j] -= NET_VALUE_CLUSTER[j] * TRADE_COST
NET_VALUE_CLUSTER[j] -= NET_VALUE_CLUSTER[j] * TAX_COST
HAS_POSITION_CLUSTER[j]=False
if HAS_POSITION_CLUSTER[j]==True:
NET_VALUE_CLUSTER[j] = NET_VALUE_CLUSTER[j] * growth
NET_VALUE_LIST_CLUSTER[j].append(NET_VALUE_CLUSTER[j])
simtrade_netvalue_list.append(simtrade_netvalue)
alpha_list.append(simtrade_netvalue/benchmark_netvalue-1)
if i%30==0:
percent = i/float(len(groundTruthList))
print('Simulate Calc %0.2f%% ...' %(percent*100.0))
plt.figure(figsize=(15,10))
plt.title('%s Sim Trade Net Value Chart\n' %indexCode)
plt.xlabel('Days')
plt.ylabel('NetValue')
plt.plot(simtrade_netvalue_list, linewidth=5.0, color=[1,0,0], label='SimTrade(%0.2f)' %BUY_LINE)
plt.plot(benchmark_netvalue_list, linewidth=1.0, color=[0,0,1], linestyle='--', label='Benchmark')
for j in range(0, CLUSTER_COUNT):
lw = 1.0
rankstr = ''
if NET_VALUE_CLUSTER[j]==max(NET_VALUE_CLUSTER):
lw = 2.0
rankstr = '(Best)'
elif NET_VALUE_CLUSTER[j]==min(NET_VALUE_CLUSTER):
lw = 2.0
rankstr = '(Worst)'
if BUY_LINE_CLUSTER[j]!=-1:
plt.plot(NET_VALUE_LIST_CLUSTER[j], linewidth=lw, label='bl %0.2f %s' %(BUY_LINE_CLUSTER[j], rankstr))
else:
plt.plot(NET_VALUE_LIST_CLUSTER[j], linewidth=3.0, linestyle=':', label='RandomSet')
plt.legend(loc='upper left')
plt.show()
#plt.figure(figsize=(12,7))
#plt.title('%s Alpha Chart\n' %indexCode)
#plt.xlabel('Days')
#plt.ylabel('Alpha')
#plt.plot(alpha_list, linewidth=1.0, color=[1,0,0], label='Alpha')
#plt.legend(loc='upper left')
#plt.show()
print('Accuracy : %0.2f%%' %(predictRight/predictTotal*100.0))
print('Profit&loss Ratio : %0.2f%%' %((WIN_WEIGHT/LOSE_WEIGHT-1)*100))
print('Hit Rate : %0.2f%%' %(HIT_COUNT/TOTAL_COUNT*100.0))
print('Benchmark NetValue : %f' %(benchmark_netvalue))
print('Simtrade NetValue : %f' %(simtrade_netvalue))
print('\n')
for j in range(0, CLUSTER_COUNT):
print('Profit&loss Ratio For Cluster(%0.2f) : %0.2f%%' %(BUY_LINE_CLUSTER[j], (WIN_WEIGHT_CLUSTER[j]/LOSE_WEIGHT_CLUSTER[j]-1)*100))
print('\n')
for j in range(0, CLUSTER_COUNT):
print('Profit Rate PerDay (%d/%d) For Cluster(%0.2f) : %0.2f%%' %(TRADE_DAYS_CLUSTER[j],int(TOTAL_COUNT), BUY_LINE_CLUSTER[j], (NET_VALUE_CLUSTER[j]-1)/TRADE_DAYS_CLUSTER[j]*100.0))