-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunction.cpp
302 lines (187 loc) · 4.61 KB
/
function.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#include "class.hpp"
namespace VAR_NAME{
/*************!
* "Peak" class constructor
* This method creates a peak object with given row, column, filename and
* number of files.
**************/
peak::peak(const int r, const int c, const int b, const string & n, const int num)
{
row = r;
column = c;
bin = b;
input = n;
n_file = num;
if(row <= 0){
cerr << "Row number is <=0" << endl;
exit(EXIT_FAILURE);
}
else if(column <= 0){
cerr << "Column number is <=0" << endl;
exit(EXIT_FAILURE);
}
else if(n_file <= 0){
cerr << "File number is <=0" << endl;
exit(EXIT_FAILURE);
}
count.resize (row);
norm_count.resize (row);
for(int i = 0; i < row; i++){
count[i].resize(column);
norm_count[i].resize(column);
}
}
/*************!
* Matrix read method
* This method reads an input matrix (peak x bins) by each value and
* populates a new matrix named Count (bins x replicates).
**************/
void peak::read(){
for(int i = 1; i <= n_file; i++){
ostringstream of;
of << input << i ;
ifstream inf(of.str().c_str(),ifstream::in);
if (!inf){
cerr << "File input error" << endl;
exit(EXIT_FAILURE);
}
int j = 0;
int tmp;
while(!inf.eof()){
inf >> tmp;
if (j<row)
count[j][i-1] = tmp;
j++;
}
inf.close();
}
}
/*************!
* Print method
* It prints out the newly created count matrix.
**************/
void peak::print(){
for(int i = 0; i<row; i++){
for(int j=0; j<column; j++){
cout<<count[i][j]<<" ";
}
cout << endl;
}
}
/*************!
* Print method.
* It prints out the newly created normalized count matrix.
**************/
void peak::print_n(){
cout.precision(13);
for(int i = 0; i<row; i++){
for(int j=0; j<column; j++){
cout<<norm_count[i][j]<<" ";
}
cout << endl;
}
}
/*************!
* Row-wise geometric mean method
* This method computes the geometric mean of each matrix row and
* populates a new matrix with the ratio between value and mean.
**************/
void peak::geo_mean(){
for(int i = 0; i < row; i++){
double result = 1.0;
int temp = 0;
// Row-wise geometric mean computation
for(int j=0; j < column; j++){
if (count[i][j] != 0){
result = result * (count[i][j]);
temp ++;
}
else {
result = 0;
break;
}
}
if (result != 0){
result = pow(result, 1.0 / temp);
// Population of a new matrix with ratios between count and
// geometric mean
for(int j=0; j < column; j++){
norm_count[i][j] = (double) count[i][j] / result;
}
}
else{
for(int j=0; j < column; j++){
norm_count[i][j] = 0.0;
}
}
}
}
/*************!
* Column-wise median
* This method computes the median of each column of a matrix and creates
* a new matrix norm_count dividing each count by the median.
**************/
void peak::col_med(){
double median = 0;
bool odd = false;
cout.precision(13);
vector < double > col_sort;
for (int j=0; j < column; j++){
for(int i = 0; i < row; i++){
if (norm_count[i][j] != 0){
col_sort.push_back(norm_count[i][j]);
}
}
sort(col_sort.begin(), col_sort.end());
int row_c = col_sort.size();
if (row_c % 2 == 0){
odd = true;
}
if (odd){
median = (col_sort[(row_c/2)-1] + col_sort[(row_c/2)])/ 2;
}
else{
median = col_sort[row_c/2];
}
col_sort.clear();
for(int i = 0; i<row; i++){
norm_count[i][j] = count[i][j] / median;
}
}
}
/*************!
* Inc count method
* Add a pseudocount to each element of the matrix of count
**************/
void peak::inc_count(){
for(int i = 0; i < row; i++){
for(int j=0; j < column; j++){
count[i][j] = count[i][j] + 1;
}
}
}
/*************!
* Output generation methos
* This method generates the output files in same format as input ones
**************/
void peak::write(){
for(int n = 1; n <= n_file; n++){
string n2 = static_cast<ostringstream*>( &(ostringstream() << n) )->str();
string name = input + "_norm_" + n2;
ofstream of;
of.open(name);
int count = 1;
for (int i = 0; i < row; i++){
if (count == bin){
of << norm_count[i][n-1] << endl;
count = 1;
}
else{
count ++;
of << norm_count[i][n-1] << "\t";
}
}
of.close();
}
}
}