From d1bd0b3f12a89727fe08030d4ddbef0e7ad6f2f6 Mon Sep 17 00:00:00 2001 From: raphaelDkhn Date: Mon, 22 Jan 2024 15:33:22 +0200 Subject: [PATCH] update osiris version --- poetry.lock | 8 ++++---- pyproject.toml | 2 +- tests/test_model.py | 2 +- 3 files changed, 6 insertions(+), 6 deletions(-) diff --git a/poetry.lock b/poetry.lock index d48662e..8d260bd 100644 --- a/poetry.lock +++ b/poetry.lock @@ -821,13 +821,13 @@ types-requests = ">=2.31.0.2,<3.0.0.0" [[package]] name = "giza-osiris" -version = "0.1.8" +version = "0.2.0" description = "Osiris is a Python library designed for efficient data conversion and management, primarily transforming data into Cairo programs" optional = false python-versions = ">=3.11,<4.0" files = [ - {file = "giza_osiris-0.1.8-py3-none-any.whl", hash = "sha256:c8a4ad26ed33d472f58d85e3ad39c8122dfe86f5809272ce9ce9c9c0bf7ecc9f"}, - {file = "giza_osiris-0.1.8.tar.gz", hash = "sha256:fd9d9f37d158b6c6d368ecee09528f55c47e3968479e03fab4aa9262fc9761aa"}, + {file = "giza_osiris-0.2.0-py3-none-any.whl", hash = "sha256:a0b188e238347e2a831bdd651a0cf4f7f0bac95128cc9219b719e3008272568d"}, + {file = "giza_osiris-0.2.0.tar.gz", hash = "sha256:fca7baf56e237887568c1a65d3b8d3496a77c913e8aa0d03db6289400c308269"}, ] [package.dependencies] @@ -3745,4 +3745,4 @@ files = [ [metadata] lock-version = "2.0" python-versions = ">=3.11,<4.0" -content-hash = "66d1d3daf055ee80ab1cce1a47967d616c1e9da4e498f92734db4c793a87f03c" +content-hash = "c525ce4829c7bd0d9e49cf5267a51c8bbdf5548b3b394ccdf5d33e00c0a83933" diff --git a/pyproject.toml b/pyproject.toml index 58dd203..26db2ad 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -18,7 +18,7 @@ pyyaml = "^6.0.1" prefect-docker = "^0.4.1" giza-cli = "^0.6.0" distlib = "^0.3.8" -giza-osiris = "0.1.8" +giza-osiris = "0.2.0" [tool.poetry.dev-dependencies] pytest = "^6.2.5" diff --git a/tests/test_model.py b/tests/test_model.py index a725759..826c3b3 100644 --- a/tests/test_model.py +++ b/tests/test_model.py @@ -12,6 +12,6 @@ def test_predict_success(): arr = np.array([[1, 2], [3, 4]], dtype=np.uint32) result = model.predict( - input_feed={"arr_1": arr}, verifiable=True, output_dtype='tensor_uint') + input_feed={"arr_1": arr}, verifiable=True, output_dtype='tensor_int') assert np.array_equal(result, arr)