diff --git a/packages/orion-algo/src/algo/linear_fit.cairo b/packages/orion-algo/src/algo/linear_fit.cairo index e7b04b5db..a2e3c44a6 100644 --- a/packages/orion-algo/src/algo/linear_fit.cairo +++ b/packages/orion-algo/src/algo/linear_fit.cairo @@ -1,6 +1,41 @@ use orion_numbers::{f16x16::core::{f16x16}, FixedTrait}; use orion_algo::span_math::SpanMathTrait; +/// Performs a linear least squares fitting to provided data points. This function calculates +/// the slope and intercept for the line of best fit using the formulae derived from the method +/// of least squares. +/// +/// # Arguments +/// * `x` - A `Span` containing the x-coordinates of the data points. +/// * `y` - A `Span` containing the y-coordinates of the data points. +/// +/// # Returns +/// A tuple `(T, T)` where the first element is the slope (`a`) and the second element is the +/// intercept (`b`) of the line of best fit. +/// +/// # Panics +/// * The function panics if the lengths of `x` and `y` are not the same or if either is empty. +/// * It also panics if a division by zero occurs, which can happen if the points are perfectly +/// collinear along the x-axis resulting in zero variance in `x`. +/// +/// # Examples +/// Basic usage: +/// +/// ``` +/// let x = array![0, 65536, 131072, 196608, 262144, 327680].span(); +/// let y = array![0, 131072, 262144, 393216, 524288, 655360].span(); +/// let (slope, intercept) = linear_fit(x, y); +/// // Expected output: (slope, intercept) where slope should closely match the true slope of the data. +/// ``` +/// +/// With noisy data: +/// +/// ``` +/// let x = array![0, 65536, 131072, 196608, 262144, 327680].span(); +/// let y = array![6554, 144179, 255590, 399770, 517734, 668467].span(); +/// let (slope, intercept) = linear_fit(x, y); +/// // Expected output: (slope, intercept) that best fits the provided noisy data. +/// ``` pub fn linear_fit< T, +SpanMathTrait,