forked from sanshar/Block
-
Notifications
You must be signed in to change notification settings - Fork 1
/
opxop.C
616 lines (494 loc) · 32.3 KB
/
opxop.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
#include "opxop.h"
#include "operatorfunctions.h"
#include "wavefunction.h"
#include "BaseOperator.h"
#include "tensor_operator.h"
#ifdef _OPENMP
#include <omp.h>
#else
#define omp_get_thread_num() 0
#endif
#include "guess_wavefunction.h"
#include "pario.h"
//using namespace operatorfunctions;
/********************************************
Formulas for making hamiltonian matrix while blocking a block with a dot block
********************************************/
void SpinAdapted::opxop::cdxcdcomp(const SpinBlock* otherblock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, SparseMatrix* o) {
int ilock = omp_get_thread_num();
int numthrds = 1;//MAX_THRD;
const SpinBlock* loopblock = (otherblock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) { // this is CreDes_{ij}
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock);
int i = op1->get_orbs(0);
int j = op1->get_orbs(1);
if (!otherblock->get_op_array(CRE_DESCOMP).has_local_index(i,j))
return;
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(CRE_DESCOMP).get_element(i, j).at(opind)->getworkingrepresentation(otherblock);
double factor = 1.0;
SpinAdapted::operatorfunctions::TensorProduct(otherblock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], factor, numthrds);
if (i != j) {
//If we have all the operators we dont have to take transposes, useful for <bra|H|ket> evaluation
if (otherblock->has(DES_CRECOMP)) {
op1 = loopblock->get_op_array(DES_CRE).get_element(i,j).at(opind)->getworkingrepresentation(loopblock);
double parity = 1.0;
if (dmrginp.spinAdapted() == true && dmrginp.hamiltonian() != BCS)
parity = getCommuteParity(-getSpinQuantum(i), getSpinQuantum(j), op1->get_deltaQuantum()[0]);
op2 = otherblock->get_op_array(DES_CRECOMP).get_element(i,j).at(opind)->getworkingrepresentation(otherblock);
SpinAdapted::operatorfunctions::TensorProduct(otherblock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], factor*parity, numthrds);
} else {
SpinAdapted::operatorfunctions::TensorProduct(otherblock, Transposeview(*op2), Transposeview(*op1), b, &(b->get_stateInfo()), o[ilock], factor, numthrds);
}
}
}
}
void SpinAdapted::opxop::ddxcccomp(const SpinBlock* otherblock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, SparseMatrix* o)
{
int ilock = omp_get_thread_num();
int numthrds = 1;//MAX_THRD;
const SpinBlock* loopblock = (otherblock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock); // CC_{ij}
int i = op1->get_orbs(0);
int j = op1->get_orbs(1);
if (!otherblock->get_op_array(DES_DESCOMP).has_local_index(i,j))
return;
double factor = 2.0; if (i==j) factor = 1.0;
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(DES_DESCOMP).get_element(i, j).at(opind)->getworkingrepresentation(otherblock);
double scale = 1.0;
double parity = 1.0;
if (otherblock == b->get_leftBlock())
parity = getCommuteParity(op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), o->get_deltaQuantum(0));
SpinAdapted::operatorfunctions::TensorProduct(otherblock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], parity*factor, numthrds);
//If we have all the operators we dont have to take transposes, useful for <bra|H|ket> evaluation
if (otherblock->has(CRE_CRECOMP)) {
op2 = otherblock->get_op_array(CRE_CRECOMP).get_element(i, j).at(opind)->getworkingrepresentation(otherblock);
op1 = loopblock->get_op_array(DES_DES).get_element(i, j).at(opind)->getworkingrepresentation(loopblock);
SpinAdapted::operatorfunctions::TensorProduct(otherblock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], parity*factor, numthrds);
} else {
Transposeview top1 = Transposeview(*op1);
Transposeview top2 = Transposeview(*op2);
SpinQuantum sq1 = op1->get_deltaQuantum(0);
SpinQuantum sq2 = op2->get_deltaQuantum(0);
double parity2 =TensorOp::getTransposeFactorDD(i, j, sq1.get_s().getirrep(), sq1.get_symm().getirrep());
parity2*=TensorOp::getTransposeFactorDD(i, j, sq2.get_s().getirrep(), sq2.get_symm().getirrep());
parity *= parity2;
SpinAdapted::operatorfunctions::TensorProduct(otherblock, top2, top1, b, &(b->get_stateInfo()), o[ilock], parity*factor, numthrds);
}
}
}
void SpinAdapted::opxop::cxcddcomp(const SpinBlock* otherblock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, SparseMatrix* o)
{
int ilock = omp_get_thread_num();
int numthrds = 1;//MAX_THRD;
const SpinBlock* loopblock = (otherblock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock); // CRE_i
int i = op1->get_orbs(0);
if (!otherblock->get_op_array(CRE_CRE_DESCOMP).has_local_index(i))
return;
//If we have all the operators we dont have to take transposes, useful for <bra|H|ket> evaluation
if (loopblock->has(DES)) {
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(CRE_DES_DESCOMP).get_element(i).at(opind)->getworkingrepresentation(otherblock);
double scale = 1.0;
double parity = 1.0;
if (otherblock == b->get_leftBlock()) parity = getCommuteParity(op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), o->get_deltaQuantum(0));
else parity = 1.0;
SpinAdapted::operatorfunctions::TensorProduct(otherblock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], scale*parity, numthrds);
if (otherblock == b->get_rightBlock()) parity = getCommuteParity(op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), o->get_deltaQuantum(0));
else parity = 1.0;
op1 = loopblock->get_op_array(DES).get_element(i).at(opind)->getworkingrepresentation(loopblock);
op2 = otherblock->get_op_array(CRE_CRE_DESCOMP).get_element(i).at(opind)->getworkingrepresentation(otherblock);
SpinAdapted::operatorfunctions::TensorProduct(otherblock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], scale*parity, numthrds);
} else {
Transposeview top1 = Transposeview(op1); // DES_i
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(CRE_CRE_DESCOMP).get_element(i).at(opind)->getworkingrepresentation(otherblock); // CCD_i
double scale = 1.0;
double parity = 1.0;
if (otherblock == b->get_rightBlock()) parity = getCommuteParity(-op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), o->get_deltaQuantum(0));
SpinAdapted::operatorfunctions::TensorProduct(otherblock, *op2, top1, b, &(b->get_stateInfo()), o[ilock], scale*parity, numthrds);
// complex conjugate
Transposeview top2 = Transposeview(op2); // CDD_i
if (otherblock == b->get_leftBlock()) parity = getCommuteParity(-op2->get_deltaQuantum(0), op1->get_deltaQuantum(0), o->get_deltaQuantum(0));
else parity = 1.0;
SpinAdapted::operatorfunctions::TensorProduct(otherblock, top2, *op1, b, &(b->get_stateInfo()), o[ilock], scale*parity, numthrds);
}
}
}
//***************************************************************************************
/********************************************
Formulas for multiplying hamiltonian with wavefunction without ever making the hamiltonian explicitly
********************************************/
void SpinAdapted::opxop::cdxcdcomp(const SpinBlock* otherblock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, Wavefunction& c, Wavefunction* v, const SpinQuantum& q)
{
int ilock = omp_get_thread_num();
int numthrds = 1;//MAX_THRD;
SpinQuantum hq(0,SpinSpace(0),IrrepSpace(0));
const SpinBlock* loopblock = (otherblock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock);
int i = op1->get_orbs(0);
int j = op1->get_orbs(1);
if (!otherblock->get_op_array(CRE_DESCOMP).has_local_index(i,j))
return;
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(CRE_DESCOMP).get_element(i, j).at(opind)->getworkingrepresentation(otherblock);
double factor = 1.0;
SpinAdapted::operatorfunctions::TensorMultiply(otherblock, *op2, *op1, b, c, v[ilock], hq, factor);
if (i != j) {
//If we have all the operators we dont have to take transposes, useful for <bra|H|ket> evaluation
if (otherblock->has(DES_CRECOMP)) {
op1 = loopblock->get_op_array(DES_CRE).get_element(i,j).at(opind)->getworkingrepresentation(loopblock);
double parity = 1.0;
if (dmrginp.spinAdapted() == true && dmrginp.hamiltonian() != BCS)
parity = getCommuteParity(-getSpinQuantum(i), getSpinQuantum(j), op1->get_deltaQuantum()[0]);
op2 = otherblock->get_op_array(DES_CRECOMP).get_element(i,j).at(opind)->getworkingrepresentation(otherblock);
SpinAdapted::operatorfunctions::TensorMultiply(otherblock, *op2, *op1, b, c, v[ilock], hq, parity*factor);
}
else
SpinAdapted::operatorfunctions::TensorMultiply(otherblock, Transposeview(*op2), Transposeview(*op1), b, c, v[ilock], hq, factor);
}
}
}
void SpinAdapted::opxop::ddxcccomp(const SpinBlock* otherblock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, Wavefunction& c, Wavefunction* v, const SpinQuantum& q)
{
int ilock = omp_get_thread_num();
int numthrds = 1;//MAX_THRD;
SpinQuantum hq(0,SpinSpace(0),IrrepSpace(0));
const SpinBlock* loopblock = (otherblock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock);
int i = op1->get_orbs(0);
int j = op1->get_orbs(1);
if (!otherblock->get_op_array(DES_DESCOMP).has_local_index(i,j))
return;
double factor = 2.0; if (i==j) factor = 1.0;
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(DES_DESCOMP).get_element(i, j).at(opind)->getworkingrepresentation(otherblock);
double scale = 1.0;
double parity = 1.0;
if (otherblock == b->get_leftBlock())
parity = getCommuteParity(op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), hq);
SpinAdapted::operatorfunctions::TensorMultiply(otherblock, *op2, *op1, b, c, v[ilock], hq, factor*parity);
//If we have all the operators we dont have to take transposes, useful for <bra|H|ket> evaluation
if (otherblock->has(CRE_CRECOMP)) {
op2 = otherblock->get_op_array(CRE_CRECOMP).get_element(i, j).at(opind)->getworkingrepresentation(otherblock);
op1 = loopblock->get_op_array(DES_DES).get_element(i, j).at(opind)->getworkingrepresentation(loopblock);
SpinAdapted::operatorfunctions::TensorMultiply(otherblock, *op2, *op1, b, c, v[ilock], hq, factor*parity);
} else {
Transposeview top1 = Transposeview(*op1);
Transposeview top2 = Transposeview(*op2);
SpinQuantum sq1 = op1->get_deltaQuantum(0);
SpinQuantum sq2 = op2->get_deltaQuantum(0);
double parity2 =TensorOp::getTransposeFactorDD(i, j, sq1.get_s().getirrep(), sq1.get_symm().getirrep());
parity2*=TensorOp::getTransposeFactorDD(i, j, sq2.get_s().getirrep(), sq2.get_symm().getirrep());
parity *= parity2;
SpinAdapted::operatorfunctions::TensorMultiply(otherblock, top2, top1, b, c, v[ilock], hq, factor*parity);
}
}
}
void SpinAdapted::opxop::cxcddcomp(const SpinBlock* otherblock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, Wavefunction& c, Wavefunction* v, const SpinQuantum& q)
{
int ilock = omp_get_thread_num();
int numthrds = 1;//MAX_THRD;
SpinQuantum hq(0,SpinSpace(0),IrrepSpace(0)); // in get_parity, number part is not used
const SpinBlock* loopblock = (otherblock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind);
int i = op1->get_orbs(0);
if (!otherblock->get_op_array(CRE_CRE_DESCOMP).has_local_index(i))
return;
//If we have all the operators we dont have to take transposes, useful for <bra|H|ket> evaluation
if (loopblock->has(DES) ) {
double scale = 1.0;
double parity = 1.0;
{
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(CRE_DES_DESCOMP).get_element(i).at(opind)->getworkingrepresentation(otherblock);
boost::shared_ptr<SparseMatrix> op1rep = op1->getworkingrepresentation(loopblock);
if (otherblock == b->get_leftBlock())
parity = getCommuteParity(op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), hq);
SpinAdapted::operatorfunctions::TensorMultiply(otherblock, *op2, *op1rep, b, c, v[ilock], hq, scale*parity);
}
{
boost::shared_ptr<SparseMatrix> op1 = loopblock->get_op_array(DES).get_element(i).at(opind)->getworkingrepresentation(loopblock);
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(CRE_CRE_DESCOMP).get_element(i).at(opind)->getworkingrepresentation(otherblock);
if (otherblock == b->get_rightBlock()) parity = getCommuteParity(op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), hq);
else parity = 1.0;
SpinAdapted::operatorfunctions::TensorMultiply(otherblock, *op2, *op1, b, c, v[ilock], hq, scale*parity);
}
} else {
boost::shared_ptr<SparseMatrix> op1rep = op1->getworkingrepresentation(loopblock);
Transposeview top1 = Transposeview(*op1rep);
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(CRE_CRE_DESCOMP).get_element(i).at(opind)->getworkingrepresentation(otherblock);
double scale = 1.0;
double parity = 1.0;
if (otherblock == b->get_rightBlock())
parity = getCommuteParity(-op1rep->get_deltaQuantum(0), op2->get_deltaQuantum(0), hq);
SpinAdapted::operatorfunctions::TensorMultiply(otherblock, *op2, top1, b, c, v[ilock], hq, scale*parity);
Transposeview top2 = Transposeview(*op2);
if (otherblock == b->get_leftBlock()) parity = getCommuteParity(op1rep->get_deltaQuantum(0), -op2->get_deltaQuantum(0), hq);
else parity = 1.0;
SpinAdapted::operatorfunctions::TensorMultiply(otherblock, top2, *op1rep, b, c, v[ilock], hq, scale*parity);
}
}
}
//***************************************************************************************************
/********************************************
Formulas for making diagonal hamiltonian matrix while blocking system and environment blocks
********************************************/
void SpinAdapted::opxop::cdxcdcomp_d(const SpinBlock* otherblock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, DiagonalMatrix* e)
{
int ilock = omp_get_thread_num();
int numthrds = 1;//MAX_THRD;
const SpinBlock* loopblock = (otherblock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock);
int i = op1->get_orbs(0);
int j = op1->get_orbs(1);
if (!otherblock->get_op_array(CRE_DESCOMP).has_local_index(i,j))
return;
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(CRE_DESCOMP).get_element(i, j).at(opind)->getworkingrepresentation(otherblock);
double factor = 1.0;
SpinAdapted::operatorfunctions::TensorProduct(otherblock, *op2, *op1, b, &(b->get_stateInfo()), e[ilock], factor);
if (i != j)
SpinAdapted::operatorfunctions::TensorProduct(otherblock, Transposeview(*op2), Transposeview(*op1), b, &(b->get_stateInfo()), e[ilock], factor);
}
}
void SpinAdapted::opxop::ddxcccomp_d(const SpinBlock* otherblock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, DiagonalMatrix* e)
{
int ilock = omp_get_thread_num();
int numthrds = 1;//MAX_THRD;
SpinQuantum q(0,SpinSpace(0),IrrepSpace(0));
const SpinBlock* loopblock = (otherblock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock);
int i = op1->get_orbs(0);
int j = op1->get_orbs(1);
if (!otherblock->get_op_array(DES_DESCOMP).has_local_index(i,j))
return;
double factor = 2.0; if (i==j) factor = 1.0;
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(DES_DESCOMP).get_element(i, j).at(opind)->getworkingrepresentation(otherblock);
double scale = 1.0;
SpinAdapted::operatorfunctions::TensorProduct(otherblock, *op2, *op1, b, &(b->get_stateInfo()), e[ilock], scale*factor);
Transposeview top1 = Transposeview(*op1);
Transposeview top2 = Transposeview(*op2);
SpinAdapted::operatorfunctions::TensorProduct(otherblock, top2, top1, b, &(b->get_stateInfo()), e[ilock], scale*factor);
}
}
void SpinAdapted::opxop::cxcddcomp_d(const SpinBlock* otherblock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, DiagonalMatrix* e)
{
int ilock = omp_get_thread_num();
int numthrds = 1;//MAX_THRD;
const SpinBlock* loopblock = (otherblock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock);
int i = op1->get_orbs(0);
if (!otherblock->get_op_array(CRE_CRE_DESCOMP).has_local_index(i))
return;
Transposeview top1 = Transposeview(op1);
boost::shared_ptr<SparseMatrix> op2 = otherblock->get_op_array(CRE_CRE_DESCOMP).get_element(i).at(opind)->getworkingrepresentation(otherblock);
double scale = 1.0;
double parity = 1.0;
//if (otherblock == b->get_rightBlock())
//parity = getCommuteParity(op1->get_deltaQuantum(), op2->get_deltaQuantum(), q);
SpinAdapted::operatorfunctions::TensorProduct(otherblock, *op2, top1, b, &(b->get_stateInfo()), e[ilock], scale*parity);
Transposeview top2 = Transposeview(op2);
SpinAdapted::operatorfunctions::TensorProduct(otherblock, top2, *op1, b, &(b->get_stateInfo()), e[ilock], scale*parity);
}
}
//************************************************************************************
/********************************************
Formulas for making CCdcomp operators while blocking a block with a dot block
********************************************/
void SpinAdapted::opxop::cxcdcomp(const SpinBlock* otherBlock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, int I, SparseMatrix* o, double scale)
{
int ilock = 0;//omp_get_thread_num();
int numthrds = 1;
const SpinBlock* loopblock = (otherBlock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
if (opvec1[0]->get_orbs(0) >= I) // opvec1 is CRE
{
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock);
if (!otherBlock->get_op_array(CRE_DESCOMP).has_local_index(op1->get_orbs(0), I)) // we have c_J d_I *c_K d_L
return;
const std::vector<boost::shared_ptr<SparseMatrix> >& opvec2 = otherBlock->get_op_array(CRE_DESCOMP).get_element(op1->get_orbs(0), I); // CD_comp(j,i) have multiple matrices because of spin adaption
for (int opind2 = 0; opind2<opvec2.size(); opind2++) {
boost::shared_ptr<SparseMatrix> op2 = opvec2.at(opind2)->getworkingrepresentation(otherBlock); // CD
vector<SpinQuantum> op2q = op2->get_deltaQuantum(), op1q = op1->get_deltaQuantum(), oq = o->get_deltaQuantum(); // o is the resulted CCD
int j2 = op2q[0].get_s().getirrep(), j1 = op1q[0].get_s().getirrep(), j21 = oq[0].get_s().getirrep();
int l2 = op2q[0].get_symm().getirrep(), l1 = op1q[0].get_symm().getirrep(), l21 = oq[0].get_symm().getirrep(), l3 = (-SymmetryOfOrb(I)).getirrep();
double factor = dmrginp.spinAdapted() ? pow(-1.0, static_cast<int>((2+j2)/2)) * sixj(j2, j1, j21, 1, 0, j2) * sqrt((j21+1)*(j2+1)) : 1.0;
if (NonabelianSym)
factor *= Symmetry::spatial_sixj(l2, l1, l21, l3, 0, (-IrrepSpace(l2)).getirrep());
double parity = 1.0;
if (otherBlock == b->get_rightBlock())
parity *= getCommuteParity(op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), o->get_deltaQuantum(0)); // doesn't depend on nelec
factor*= parity;
SpinAdapted::operatorfunctions::TensorProduct(otherBlock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], factor*scale, numthrds); // CD*C
}
}
} else {
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock);
if (!otherBlock->get_op_array(CRE_DESCOMP).has_local_index(I, op1->get_orbs(0)))
return;
const std::vector<boost::shared_ptr<SparseMatrix>>& opvec2 = otherBlock->has(DES_CRECOMP) ? \
otherBlock->get_op_array(DES_CRECOMP).get_element(I, op1->get_orbs(0)) : \
otherBlock->get_op_array(CRE_DESCOMP).get_element(I, op1->get_orbs(0));
for (int opind2 = 0; opind2<opvec2.size(); opind2++) {
boost::shared_ptr<SparseMatrix> op2 = opvec2.at(opind2)->getworkingrepresentation(otherBlock);
vector<SpinQuantum> op2q = op2->get_deltaQuantum(), op1q = op1->get_deltaQuantum(), oq = o->get_deltaQuantum();
int j2 = op2q[0].get_s().getirrep(), j1 = op1q[0].get_s().getirrep(), j21 = oq[0].get_s().getirrep();
int l2 = (-op2q[0].get_symm()).getirrep(), l1 = op1q[0].get_symm().getirrep(), l21 = oq[0].get_symm().getirrep(), l3 = (-SymmetryOfOrb(I)).getirrep();
double factor = dmrginp.spinAdapted() ? pow(-1.0, static_cast<int>((1+1+0+j2)/2)) * sixj(j2, j1, j21, 1, 0, j2) * sqrt((j21+1)*(j2+1)) : 1.0;
if (NonabelianSym)
factor *= Symmetry::spatial_sixj(l2, l1, l21, l3, 0, (-IrrepSpace(l2)).getirrep());
double parity = 1.0;
if (otherBlock == b->get_rightBlock() && !otherBlock->has(DES_CRECOMP))
parity *= getCommuteParity(op1->get_deltaQuantum(0), -op2->get_deltaQuantum(0), o->get_deltaQuantum(0));
else if (otherBlock == b->get_rightBlock())
parity *= getCommuteParity(op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), o->get_deltaQuantum(0));
parity *= TensorOp::getTransposeFactorCD(I, op1->get_orbs(0), j2, l2);
//If we have all the operators we dont have to take transposes, useful for <bra|H|ket> evaluation
if (!otherBlock->has(DES_CRECOMP)) {
SpinAdapted::operatorfunctions::TensorProduct(otherBlock, Transposeview(*op2), *op1, b, &(b->get_stateInfo()), o[ilock], factor*scale*parity, numthrds);
} else {
double parity = 1.0;
if (otherBlock == b->get_rightBlock())
parity *= getCommuteParity(op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), o->get_deltaQuantum(0)); // doesn't depend on nelec
SpinAdapted::operatorfunctions::TensorProduct(otherBlock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], factor*scale*parity, numthrds);
}
}
}
}
}
void SpinAdapted::opxop::dxcccomp(const SpinBlock* otherBlock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, int K, SparseMatrix* o, double scale)
{
int ilock = 0;//omp_get_thread_num();
int numthrds = 1;
//int numthrds = dmrginp.thrds_per_node()[mpigetrank()];
const SpinBlock* loopblock = (otherBlock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
//If we have all the operators we dont have to take transposes, useful for <bra|H|ket> evaluation
if (loopblock->has(DES) ) {
boost::shared_ptr<SparseMatrix> op1 = loopblock->get_op_array(DES).get_element(opvec1.at(opind)->get_orbs(0)).at(opind)->getworkingrepresentation(loopblock); // DES_j
bool transpose = false;
int k = K, i = op1->get_orbs(0); // P_{ij}=-P_{ji} so only one of them is stored --- P_{ij} where i>j
if (k < i) {
k=i; i=K; transpose = true;
}
SpinQuantum iq = getSpinQuantum(i), kq = getSpinQuantum(k);
if (!otherBlock->get_op_array(CRE_CRECOMP).has_local_index(k,i))
return;
const std::vector<boost::shared_ptr<SparseMatrix> >& opvec2 = otherBlock->get_op_array(CRE_CRECOMP).get_element(k,i); // P_{ki}
for (int opind2 = 0; opind2<opvec2.size(); opind2++) {
boost::shared_ptr<SparseMatrix> op2 = opvec2.at(opind2)->getworkingrepresentation(otherBlock); // P_{ki}^\dagger
SpinQuantum op2q = op2->get_deltaQuantum(0), op1q = op1->get_deltaQuantum(0), oq = o->get_deltaQuantum(0);
int j2 = op2q.get_s().getirrep(), j1 = op1q.get_s().getirrep(), j21 = oq.get_s().getirrep();
int l2 = op2q.get_symm().getirrep(), l1 = op1q.get_symm().getirrep(), l21 = oq.get_symm().getirrep(), l3 = (-SymmetryOfOrb(K)).getirrep();
double factor = dmrginp.spinAdapted() ? pow(-1.0, static_cast<int>((2+j2)/2)) * sixj(j2, j1, j21, 1, 0, j2) * sqrt((j21+1)*(j2+1)) : 1.0;
if (NonabelianSym)
factor *= Symmetry::spatial_sixj(l2, l1, l21, l3, 0, (-IrrepSpace(l2)).getirrep());
double parity = 1.0;
if (!transpose) //this is because when you go from CC_{ij} to CC_{ji} there is a phase factor
parity *= getCommuteParity(iq, kq, op2->get_deltaQuantum(0));
if (loopblock == b->get_leftBlock()) //this is because you have CC_{ji} d_j
parity*= getCommuteParity(-iq, op2->get_deltaQuantum(0), kq);
SpinAdapted::operatorfunctions::TensorProduct(otherBlock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], parity*factor*scale, numthrds);
}
} else {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock); // CRE_j
bool transpose = false;
int k = K, i = op1->get_orbs(0); // P_{ij}=-P_{ji} so only one of them is stored --- P_{ij} where i>j
if (k < i) {
k=i; i=K; transpose = true;
}
SpinQuantum iq = getSpinQuantum(i), kq = getSpinQuantum(k);
if (!otherBlock->get_op_array(DES_DESCOMP).has_local_index(k,i))
return;
const std::vector<boost::shared_ptr<SparseMatrix> >& opvec2 = otherBlock->get_op_array(DES_DESCOMP).get_element(k,i); // P_{ki}
for (int opind2 = 0; opind2<opvec2.size(); opind2++) {
Transposeview top = Transposeview(opvec2.at(opind2)->getworkingrepresentation(otherBlock)); // P_{ki}^\dagger
SpinQuantum op2q = top.get_deltaQuantum(0), op1q = -op1->get_deltaQuantum(0), oq = o->get_deltaQuantum(0);
int j2 = op2q.get_s().getirrep(), j1 = op1q.get_s().getirrep(), j21 = oq.get_s().getirrep();
int l2 = op2q.get_symm().getirrep(), l1 = op1q.get_symm().getirrep(), l21 = oq.get_symm().getirrep(), l3 = (-SymmetryOfOrb(K)).getirrep();
double factor = dmrginp.spinAdapted() ? pow(-1.0, static_cast<int>((2+j2)/2)) * sixj(j2, j1, j21, 1, 0, j2) * sqrt((j21+1)*(j2+1)) : 1.0;
if (NonabelianSym)
factor *= Symmetry::spatial_sixj(l2, l1, l21, l3, 0, (-IrrepSpace(l2)).getirrep());
double parity = 1.0;
//this is because DD_ij^dag = - CC_ij for spin 0 and certain spatial irreps
parity*=TensorOp::getTransposeFactorDD(K, op1->get_orbs(0), j2, l2);
if (transpose) //this is because when you go from CC_{ij} to CC_{ji} there is a phase factor
parity *= getCommuteParity(iq, kq, top.get_deltaQuantum(0));
if (loopblock == b->get_leftBlock()) //this is because you have CC_{ji} d_j
parity*= getCommuteParity(-iq, top.get_deltaQuantum(0), kq);
//pout << k<<" "<<i<<" "<<factor<<" "<<scale<<" "<<parity<<endl;
SpinAdapted::operatorfunctions::TensorProduct(otherBlock, top, Transposeview(op1), b, &(b->get_stateInfo()), o[ilock], parity*factor*scale, numthrds);
}
}
}
}
/********************************************
Formulas for making Cddcomp operators while blocking a block with a dot block
********************************************/
void SpinAdapted::opxop::dxcdcomp(const SpinBlock* otherBlock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, int I, SparseMatrix* o, double scale)
{
int ilock = 0;//omp_get_thread_num();
int numthrds = 1;
const SpinBlock* loopblock = (otherBlock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock);
if (!otherBlock->get_op_array(CRE_DESCOMP).has_local_index(max(I, op1->get_orbs(0)), min(I, op1->get_orbs(0)))) // we have c_J d_I *c_K d_L
return;
std::vector<boost::shared_ptr<SparseMatrix> > opvec2 ;
if (I > opvec1[0]->get_orbs(0) ) // opvec1 is DES
opvec2 = otherBlock->get_op_array(CRE_DESCOMP).get_element(I, op1->get_orbs(0));
else
opvec2 = otherBlock->get_op_array(DES_CRECOMP).get_element(op1->get_orbs(0), I);
for (int opind2 = 0; opind2<opvec2.size(); opind2++) {
boost::shared_ptr<SparseMatrix> op2 = opvec2.at(opind2)->getworkingrepresentation(otherBlock); // CD
vector<SpinQuantum> op2q = op2->get_deltaQuantum(), op1q = op1->get_deltaQuantum(), oq = o->get_deltaQuantum(); // o is the resulted CCD
int j2 = op2q[0].get_s().getirrep(), j1 = op1q[0].get_s().getirrep(), j21 = oq[0].get_s().getirrep();
int l2 = op2q[0].get_symm().getirrep(), l1 = op1q[0].get_symm().getirrep(), l21 = oq[0].get_symm().getirrep(), l3 = (-SymmetryOfOrb(I)).getirrep();
double factor = dmrginp.spinAdapted() ? pow(-1.0, static_cast<int>((2+j2)/2)) * sixj(j2, j1, j21, 1, 0, j2) * sqrt((j21+1)*(j2+1)) : 1.0;
if (NonabelianSym)
factor *= Symmetry::spatial_sixj(l2, l1, l21, l3, 0, (-IrrepSpace(l2)).getirrep());
double parity = 1.0;
if (otherBlock == b->get_leftBlock())
parity *= getCommuteParity(op1->get_deltaQuantum(0), op2->get_deltaQuantum(0), o->get_deltaQuantum(0)); // doesn't depend on nelec
SpinAdapted::operatorfunctions::TensorProduct(otherBlock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], factor*scale*parity, numthrds); // CD*D
}
}
}
void SpinAdapted::opxop::cxddcomp(const SpinBlock* otherBlock, std::vector<boost::shared_ptr<SparseMatrix> >& opvec1, const SpinBlock* b, int K, SparseMatrix* o, double scale)
{
int ilock = 0;//omp_get_thread_num();
int numthrds = 1;
//int numthrds = dmrginp.thrds_per_node()[mpigetrank()];
const SpinBlock* loopblock = (otherBlock==b->get_leftBlock()) ? b->get_rightBlock() : b->get_leftBlock();
for (int opind=0; opind<opvec1.size(); opind++) {
boost::shared_ptr<SparseMatrix> op1 = opvec1.at(opind)->getworkingrepresentation(loopblock); // CRE_j
bool transpose = false;
int k = K, i = op1->get_orbs(0); // P_{ij}=-P_{ji} so only one of them is stored --- P_{ij} where i>j
if (k < i)
{ k=i; i=K; transpose = true;}
SpinQuantum iq = getSpinQuantum(i), kq = getSpinQuantum(k);
if (!otherBlock->get_op_array(DES_DESCOMP).has_local_index(k,i))
return;
const std::vector<boost::shared_ptr<SparseMatrix> >& opvec2 = otherBlock->get_op_array(DES_DESCOMP).get_element(k,i); // P_{ki}
for (int opind2 = 0; opind2<opvec2.size(); opind2++) {
boost::shared_ptr<SparseMatrix> op2 = opvec2.at(opind2)->getworkingrepresentation(otherBlock); // P_{ki}^\dagger
SpinQuantum op2q = op2->get_deltaQuantum(0), op1q = op1->get_deltaQuantum(0), oq = o->get_deltaQuantum(0);
int j2 = op2q.get_s().getirrep(), j1 = op1q.get_s().getirrep(), j21 = oq.get_s().getirrep();
int l2 = op2q.get_symm().getirrep(), l1 = op1q.get_symm().getirrep(), l21 = (-oq.get_symm()).getirrep(), l3 = (-SymmetryOfOrb(K)).getirrep();
double factor = dmrginp.spinAdapted() ? pow(-1.0, static_cast<int>((2+j2)/2)) * sixj(j2, j1, j21, 1, 0, j2) * sqrt((j21+1)*(j2+1)) : 1.0;
if (NonabelianSym)
factor *= Symmetry::spatial_sixj(l2, l1, l21, l3, 0, (-IrrepSpace(l2)).getirrep());
double parity = 1.0;
if (transpose) //this is because when you go from CC_{ij} to CC_{ji} there is a phase factor
parity *= getCommuteParity(iq, kq, -op2->get_deltaQuantum(0));
if (loopblock == b->get_rightBlock()) //this is because you have CC_{ij} d_j
parity*= getCommuteParity(iq, op2->get_deltaQuantum(0), -kq);
SpinAdapted::operatorfunctions::TensorProduct(otherBlock, *op2, *op1, b, &(b->get_stateInfo()), o[ilock], parity*factor*scale, numthrds);
}
}
}
//**********************************************************************************************************