diff --git a/YOLO.py b/YOLO.py new file mode 100644 index 0000000..6579f75 --- /dev/null +++ b/YOLO.py @@ -0,0 +1,158 @@ +# ******************************************************************* +# +# Author : Thanh Nguyen, 2018 +# Email : sthanhng@gmail.com +# Github : https://github.com/sthanhng +# +# Face detection using the YOLOv3 algorithm +# +# Description : YOLO.py +# Contains methods of YOLO +# +# ******************************************************************* + +import os +import colorsys +import numpy as np + +from yolo.model import eval +from yolo.utils import letterbox_image + +from keras import backend as K +from keras.models import load_model +from timeit import default_timer as timer +from PIL import ImageDraw + + +class YOLO(object): + def __init__(self, args): + self.args = args + self.model_path = args.model + self.classes_path = args.classes + self.anchors_path = args.anchors + self.class_names = self._get_class() + self.anchors = self._get_anchors() + self.sess = K.get_session() + self.boxes, self.scores, self.classes = self._generate() + self.model_image_size = args.img_size + + def _get_class(self): + classes_path = os.path.expanduser(self.classes_path) + with open(classes_path) as f: + class_names = f.readlines() + class_names = [c.strip() for c in class_names] + print(class_names) + return class_names + + def _get_anchors(self): + anchors_path = os.path.expanduser(self.anchors_path) + with open(anchors_path) as f: + anchors = f.readline() + anchors = [float(x) for x in anchors.split(',')] + return np.array(anchors).reshape(-1, 2) + + def _generate(self): + model_path = os.path.expanduser(self.model_path) + assert model_path.endswith( + '.h5'), 'Keras model or weights must be a .h5 file' + + # Load model, or construct model and load weights + num_anchors = len(self.anchors) + num_classes = len(self.class_names) + try: + self.yolo_model = load_model(model_path, compile=False) + except: + # make sure model, anchors and classes match + self.yolo_model.load_weights(self.model_path) + else: + assert self.yolo_model.layers[-1].output_shape[-1] == \ + num_anchors / len(self.yolo_model.output) * ( + num_classes + 5), \ + 'Mismatch between model and given anchor and class sizes' + + print( + '[i] ==> {} model, anchors, and classes loaded.'.format(model_path)) + + # Generate colors for drawing bounding boxes + hsv_tuples = [(x / len(self.class_names), 1., 1.) + for x in range(len(self.class_names))] + self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) + self.colors = list( + map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), + self.colors)) + + # Shuffle colors to decorrelate adjacent classes. + np.random.seed(102) + np.random.shuffle(self.colors) + np.random.seed(None) + + # Generate output tensor targets for filtered bounding boxes. + self.input_image_shape = K.placeholder(shape=(2,)) + boxes, scores, classes = eval(self.yolo_model.output, self.anchors, + len(self.class_names), + self.input_image_shape, + score_threshold=self.args.score, + iou_threshold=self.args.iou) + return boxes, scores, classes + + def detect_image(self, image): + start_time = timer() + + if self.model_image_size != (None, None): + assert self.model_image_size[ + 0] % 32 == 0, 'Multiples of 32 required' + assert self.model_image_size[ + 1] % 32 == 0, 'Multiples of 32 required' + boxed_image = letterbox_image(image, tuple( + reversed(self.model_image_size))) + else: + new_image_size = (image.width - (image.width % 32), + image.height - (image.height % 32)) + boxed_image = letterbox_image(image, new_image_size) + image_data = np.array(boxed_image, dtype='float32') + + print(image_data.shape) + image_data /= 255. + # Add batch dimension + image_data = np.expand_dims(image_data, 0) + + out_boxes, out_scores, out_classes = self.sess.run( + [self.boxes, self.scores, self.classes], + feed_dict={ + self.yolo_model.input: image_data, + self.input_image_shape: [image.size[1], image.size[0]], + K.learning_phase(): 0 + }) + + print('[i] ==> Found {} face(s) for this image'.format(len(out_boxes))) + thickness = (image.size[0] + image.size[1]) // 400 + + for i, c in reversed(list(enumerate(out_classes))): + predicted_class = self.class_names[c] + box = out_boxes[i] + score = out_scores[i] + + text = '{} {:.2f}'.format(predicted_class, score) + draw = ImageDraw.Draw(image) + + top, left, bottom, right = box + top = max(0, np.floor(top + 0.5).astype('int32')) + left = max(0, np.floor(left + 0.5).astype('int32')) + bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) + right = min(image.size[0], np.floor(right + 0.5).astype('int32')) + + print(text, (left, top), (right, bottom)) + + for thk in range(thickness): + draw.rectangle( + [left + thk, top + thk, right - thk, bottom - thk], + outline=self.colors[c]) + del draw + + end_time = timer() + print('[i] ==> Processing time: {:.2f}ms'.format((end_time - + start_time) * 1000)) + return image + + def close_session(self): + self.sess.close()