-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain.py
64 lines (57 loc) · 2.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from header import *
from utils import *
from eval import *
from config import *
def parser_args():
parser = argparse.ArgumentParser(description='train parameters')
parser.add_argument('--dataset', default='zh50w', type=str)
parser.add_argument('--model', type=str)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--n_vocab', type=int, default=50000)
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--lang', type=str, default='zh')
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--seed', type=float, default=30)
parser.add_argument('--src_len_size', type=int, default=300)
parser.add_argument('--tgt_len_size', type=int, default=50)
parser.add_argument('--max_turn_size', type=int, default=10)
parser.add_argument('--multi_gpu', type=str, default=None)
parser.add_argument('--local_rank', type=int)
return parser.parse_args()
def main(**args):
if args['mode'] == 'train':
torch.cuda.set_device(args['local_rank'])
torch.distributed.init_process_group(backend='nccl', init_method='env://')
train_iter = load_dataset(args)
parameter_map, parameter_key = collect_parameter_4_model(args)
agent = agent_map[args['model']](*parameter_map, **parameter_key)
sum_writer = SummaryWriter(log_dir=f'rest/{args["dataset"]}/{args["model"]}')
for i in tqdm(range(args['epoch'])):
train_loss = agent.train_model(
train_iter,
mode='train',
recoder=sum_writer,
idx_=i,
)
# only one process save the checkpoint
if args['local_rank'] == 0:
agent.save_model(f'ckpt/{args["dataset"]}/{args["model"]}/best.pt')
sum_writer.close()
else:
test_iter = load_dataset(args)
parameter_map, parameter_key = collect_parameter_4_model(args)
agent = agent_map[args['model']](*parameter_map, **parameter_key)
agent.load_model(f'ckpt/{args["dataset"]}/{args["model"]}/best.pt')
rest_path = f'rest/{args["dataset"]}/{args["model"]}/rest.txt'
test_loss = agent.test_model(test_iter, rest_path)
if __name__ == "__main__":
args = parser_args()
args = vars(args)
print('[!] parameters:')
print(args)
print(args, file=open(f'ckpt/{args["dataset"]}/{args["model"]}/param.txt', 'w'))
random.seed(args['seed'])
torch.manual_seed(args['seed'])
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args['seed'])
main(**args)