-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tanimoto_problem.py
73 lines (56 loc) · 1.85 KB
/
test_tanimoto_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import pytest
from problems.tanimoto import TanimotoDissimProblem, TanimotoSimProblem
class MockDecoder:
def decode_population(self, x):
return x
@pytest.fixture
def setup_molecular_similarity():
decoder = MockDecoder()
target_smiles = "CN1C=NC2=C1C(=O)N(C(=O)N2C)C" # target molecule (caffeine)
problem = TanimotoSimProblem(
target_value=target_smiles, n_var=0, lbound=0, ubound=0, decoder=decoder
)
return problem
@pytest.fixture
def setup_molecular_dissimilarity():
decoder = MockDecoder()
target_smiles = "CN1C=NC2=C1C(=O)N(C(=O)N2C)C"
problem = TanimotoDissimProblem(
target_value=target_smiles, n_var=0, lbound=0, ubound=0, decoder=decoder
)
return problem
def test_evaluate_mols_sim(setup_molecular_similarity):
problem = setup_molecular_similarity
test_smiles = [
"CN1C=NC2=C1C(=O)N(C(=O)N2C)C", # caffeine
"CC(=O)Nc1ccccc1",
"O=C(O)c1ccccc1C(=O)O",
"CN1C=NC2=C1C(=O)N(C(=O)N2C)C",
"O=C(NO)[C@@H](Cc1ccc2ccccc2c1)NS(=O)(=O)c1ccc2ccccc2c1",
]
expected_similarities = [
0.0,
np.nan, # idk
np.nan,
]
similarities = problem.evaluate_mols(test_smiles)
assert similarities[0] == pytest.approx(
0.0, 0.01
), "self-similarity of the target molecule should be 0"
def test_evaluate_mols_dissim(setup_molecular_dissimilarity):
problem = setup_molecular_dissimilarity
test_smiles = [
"CN1C=NC2=C1C(=O)N(C(=O)N2C)C", # caffeine
"CC(=O)Nc1ccccc1",
"O=C(O)c1ccccc1C(=O)O",
]
expected_dissimilarities = [
1.0,
np.nan, # idk
np.nan,
]
dissimilarities = problem.evaluate_mols(test_smiles)
assert dissimilarities[0] == pytest.approx(
1.0, 0.01
), "self-dissimilarity of the target molecule should be 1.0"