-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdmpc.py
269 lines (228 loc) · 7.85 KB
/
dmpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import mpctools as mpc
import matplotlib.pyplot as plt
import itertools
import casadi
# Rolling ball game example. Linear model but nonlinear constraints.
# Some global options and parameters.
movingHorizon = True
terminalConstraint = False
terminalWeight = False
transientCost = False
import math
def generate_weight_matrix(weight_array, nrobots):
return np.diag(np.tile(weight_array, nrobots))
def generate_weight_matrix_selfish(weight_array, nrobots, this_robot):
Q_ = np.zeros((weight_array.shape[0]*Nrobots))
Q_[this_robot*Nx:this_robot*Nx+Nx] = weight_array
return np.diag(Q_)
def generate_matrix_B(robot_list, u_matrix, Nx, Nu, Nrobots):
U = np.zeros((Nx*Nrobots, Nu))
if not(isinstance(robot_list, (list, tuple))):
if isinstance(robot_list, int):
robot_list=[robot_list]
else:
raise ValueError("robot_list must be a list, a tuple or an integer.")
for i in robot_list:
U[i*Nx:i*Nx+Nx,:] = u_matrix
return U
def generate_matrix_C(robot_list, p_matrix, Nx, Nu, Nrobots):
from scipy.linalg import block_diag
C = block_diag(*[p_matrix for i in range(Nrobots)])
for i in range(Nrobots):
if i not in robot_list:
C[i*Nx:i*Nx+Nx,:] = 0
return C
def generate_matrix_A(a_matrix, Nrobots):
from scipy.linalg import block_diag
return block_diag(*[a_matrix for i in range(Nrobots)])
Nrobots = 3
Rlist = range(Nrobots)
Nx = 4
Nslack = Nrobots-1
Nu = 2
Np = (Nu+Nslack)*Nrobots
Nt = 15
Nsim = 60
Delta = 0.2
# Some bounds.
umax = 2
r_dist = 0.4
# Four states: x1, x2, v1, v2
# Two controls: a1, a2
Acont = np.array([
[0,0,1,0],
[0,0,0,1],
[0,0,0,0],
[0,0,0,0],
])
Bcont = np.array([
[0,0],
[0,0],
[1,0],
[0,1],
])
Bslack = np.zeros((Nx,Nslack))
Bcont = np.concatenate((Bcont, Bslack), axis=1)
# Build the matrix for each of the distributed MPC
Al = []
Bl = []
Cl = []
f_casadi = []
e = []
ef = []
l = []
Pf = []
for i in range(Nrobots):
other_robots_list = range(Nrobots)
other_robots_list.remove(i)
Am_cont = generate_matrix_A(Acont, Nrobots)
Bm_cont = generate_matrix_B([i], Bcont, Nx, Nu+Nslack, Nrobots)
Cm_cont = generate_matrix_C(other_robots_list, Bcont, Nx, Np, Nrobots)
# Discretize.
(A,B,C,_) = mpc.util.c2d(Am_cont, Bm_cont, Delta, Bp=Cm_cont)
f_casadi.append(mpc.getCasadiFunc(lambda x,u,p: mpc.mtimes(A,x) + mpc.mtimes(B,u) + mpc.mtimes(C,p),
[Nx*Nrobots,Nu+Nslack,Np],["x","u","p"], "f"))
Al.append(A)
Bl.append(B)
Cl.append(C)
def nlcon(x,u):
x_ = x[i*Nx+0]
y_ = x[i*Nx+1]
dist_con = []
for j in Rlist:
if j!=i:
dist_con.append(r_dist**2-(x_-x[j*Nx+0])**2-(y_-x[j*Nx+1])**2+u[(Nu)+len(dist_con)])
print dist_con
return np.array(dist_con)
e.append(mpc.getCasadiFunc(nlcon, [Nx*Nrobots, Nu+Nslack], ["x","u"], "e"))
def terminalconstraint(x):
x_ = x[i*Nx+0]
y_ = x[i*Nx+1]
dist_con = []
for j in Rlist:
if j!=i:
dist_con.append(r_dist**2-(x_-x[j*Nx+0])**2-(y_-x[j*Nx+1])**2)
return np.array(dist_con)
ef.append(mpc.getCasadiFunc(terminalconstraint, [Nx*Nrobots], ["x"], "ef"))
Q = generate_weight_matrix(np.array([5, 5, 0, 0]), Nrobots)
Qn = generate_weight_matrix(np.array([50, 50, 0, 0]), Nrobots)
#Q = generate_weight_matrix_selfish(np.array([10, 10, 0, 0]), Nrobots, i)
#Qn = generate_weight_matrix_selfish(np.array([50, 50, 0, 0]), Nrobots, i)
R = generate_weight_matrix(np.array([50, 50, 10000, 10000]), 1)
def lfunc(x,u):
return mpc.mtimes(x.T,Q,x) + mpc.mtimes(u.T,R,u)
l.append( mpc.getCasadiFunc(lfunc, [Nx*Nrobots,Nu+Nslack], ["x","u"], "l") )
Pf.append( mpc.getCasadiFunc(lambda x: mpc.mtimes(x.T,Qn,x), [Nx*Nrobots], ["x"], "Pf") )
Ne = Nrobots-1
Nef = Nrobots-1
x0 = np.array([2,2,0,0, 1.8,2,0,0, 2,2.1,0,0])
lb = {
"u": np.tile(np.tile([-umax,-umax,-0.4, -0.4], 1),(Nt,1)),
}
ub = {
"u": np.tile(np.tile([umax,umax,0.4,0.4], 1),(Nt,1)),
}
funcargs = {"f" : ["x","u","p"], "e" : ["x","u"], "l" : ["x","u"], "ef":["x"]}
# Build controller and adjust some ipopt options.
controller=[]
N = {"x":Nx*Nrobots, "u":Nu+Nslack, "e":Ne, "ef":Nef, "t":Nt, "p":Np}
Xk_DATA = np.zeros((Nx*Nrobots,))
U_DATA = np.zeros((Nt,Np))
for i in range(Nrobots):
controller.append(mpc.nmpc(f_casadi[i], l[i], N, x0, e=e[i], ef=ef[i],lb=lb, ub=ub, funcargs=funcargs, Pf=Pf[i],
verbosity=0,casaditype="SX", p=U_DATA))
controller[i].initialize(solveroptions=dict(max_iter=5000))
# Now ready for simulation.
X = []
U = []
for i in range(Nrobots):
X.append(np.zeros((Nsim+1,Nx*Nrobots)))
X[i][0,:] = x0
U.append(np.zeros((Nsim,Nu+Nslack)))
Xk_DATA = x0.copy()
r_i_x = [range(i*Nx,i*Nx+Nx) for i in range(Nrobots)]
r_i_p = [range(i*(Nu+Nslack),i*(Nu+Nslack)+(Nu+Nslack)) for i in range(Nrobots)]
for t in range(Nsim):
for i in range(Nrobots):
controller[i].fixvar("x",0,Xk_DATA)
#controller[i].fixvar("x",0,X[i][t,:])
controller[i].par["p"]=0
for j in range(1):
controller[i].par["p",j] = U_DATA[j,:]
controller[i].solve()
print "%5d: %20s" % (t,controller[i].stats["status"])
X[i][t+1,:] = np.squeeze(controller[i].var["x",1])
U[i][t,:] = np.squeeze(controller[i].var["u",0])
# for j in range(Nt):
# U_DATA[j,i*(Nu+Nslack):i*(Nu+Nslack)+(Nu+Nslack)] = np.squeeze(controller[i].var["u",j])
# U_DATA[i*(Nu+Nslack):i*(Nu+Nslack)+(Nu+Nslack)] = U[i][t,:]
# Xk_DATA[i*Nx:i*Nx+Nx] = X[i][t+1,i*Nx:i*Nx+Nx]
for i in range(Nrobots):
for j in range(1):
# U_DATA[j,i*(Nu+Nslack):i*(Nu+Nslack)+(Nu+Nslack)] = np.squeeze(controller[i].var["u",j])
U_DATA[j,r_i_p[i]] = np.squeeze(controller[i].var["u",j])
# Xk_DATA[i*Nx:i*Nx+Nx] = X[i][t+1,i*Nx:i*Nx+Nx]
Xk_DATA[r_i_x[i]] = X[i][t+1,r_i_x[i]]
f = plt.figure()
ax = f.add_subplot(1,1,1)
#for (p,r) in holes:
# circ = plt.Circle(p,r,edgecolor="red",facecolor=(1,0,0,.5))
# ax.add_artist(circ)
for i in range(Nrobots):
ax.plot(X[i][:,i*Nx+0],X[i][:,i*Nx+1],'-o',label="robot"+str(i))
plt.legend(loc="lower right")
plt.grid()
for i in range(Nrobots):
plt.figure()
plt.title("Controles robot "+str(i))
plt.step(U[i][:,0],'-o',label="u"+str(0), where="post")
plt.step(U[i][:,1],'-o',label="u"+str(1), where="post")
plt.legend(loc="lower right")
plt.grid()
Ndist = math.factorial(Nrobots)/(2*math.factorial(Nrobots-2))
dist = np.zeros((Nsim, Ndist))
dist_lbl = []
k=0
for i in Rlist:
for j in Rlist:
if j>i:
dist_lbl.append("d("+str(i)+","+str(j)+")")
for t in range(Nsim):
dist[t,k] = np.linalg.norm(X[i][t,i*Nx:i*Nx+2]-X[j][t,j*Nx:j*Nx+2])
k+=1
f = plt.figure()
for i in range(Ndist):
ax = f.add_subplot(Ndist,1,i+1)
ax.plot(dist[:,i], label=dist_lbl[i])
plt.legend()
plt.grid()
f = plt.figure()
for i in Rlist:
ax = f.add_subplot(Nrobots,1,i+1)
ax.plot(X[i][:,i*Nx+0],label="rx"+str(i))
ax.plot(X[i][:,i*Nx+1],label="ry"+str(i))
plt.legend()
plt.grid()
DMPC_X = X
DMPC_U = U
#if not movingHorizon:
# sol = mpc.util.casadiStruct2numpyDict(controller.var)
# x = sol["x"]
# u = sol["u"]
#
#def plotsol(x,holes,xmax,cushion=1):
# f = plt.figure()
# ax = f.add_subplot(1,1,1)
# for (p,r) in holes:
# circ = plt.Circle(p,r,edgecolor="red",facecolor=(1,0,0,.5))
# ax.add_artist(circ)
# ax.plot(x[:,0],x[:,1],'-ok')
# ax.set_xlabel("$x_1$")
# ax.set_ylabel("$x_2$")
# ax.set_xlim((-cushion,xmax+cushion))
# ax.set_ylim((-cushion,xmax+cushion))
# return f
#
#fig = plotsol(x,holes,xmax,cushion)
#mpc.plots.showandsave(fig, "ballmaze.pdf")