通过本教程,你将快速学会PaddleSeg的API调用,轻松进行语义分割模型的训练、评估和预测。我们将以BiSeNetV2和视盘分割数据集为例一步一步的教导你如何调用API进行模型、数据集、损失函数、优化器等模块的构建。
如果对配置化调用方式更感兴趣,可参考10分钟上手PaddleSeg教程。
Note:请在AI studio上fork本项目的最新版本,然后运行使用。
Note:若想更详细地了解PaddleSeg API,请阅读API文档
!pip install paddleseg
from paddleseg.models import BiSeNetV2
model = BiSeNetV2(num_classes=2,
lambd=0.25,
align_corners=False,
pretrained=None)
# 构建训练用的transforms
import paddleseg.transforms as T
transforms = [
T.Resize(target_size=(512, 512)),
T.RandomHorizontalFlip(),
T.Normalize()
]
# 构建训练集
from paddleseg.datasets import OpticDiscSeg
train_dataset = OpticDiscSeg(
dataset_root='data/optic_disc_seg',
transforms=transforms,
mode='train'
)
# 构建验证用的transforms
import paddleseg.transforms as T
transforms = [
T.Resize(target_size=(512, 512)),
T.Normalize()
]
# 构建验证集
from paddleseg.datasets import OpticDiscSeg
val_dataset = OpticDiscSeg(
dataset_root='data/optic_disc_seg',
transforms=transforms,
mode='val'
)
import paddle
# 设置学习率
base_lr = 0.01
lr = paddle.optimizer.lr.PolynomialDecay(base_lr, power=0.9, decay_steps=1000, end_lr=0)
optimizer = paddle.optimizer.Momentum(lr, parameters=model.parameters(), momentum=0.9, weight_decay=4.0e-5)
为了适应多路损失,损失函数应构建成包含'types'和'coef'的dict,如下所示。 其中losses['type']表示损失函数类型, losses['coef']为对应的系数。需注意len(losses['types'])应等于len(losses['coef'])。
from paddleseg.models.losses import CrossEntropyLoss
losses = {}
losses['types'] = [CrossEntropyLoss()] * 5
losses['coef'] = [1]* 5
from paddleseg.core import train
train(
model=model,
train_dataset=train_dataset,
val_dataset=val_dataset,
optimizer=optimizer,
save_dir='output',
iters=1000,
batch_size=4,
save_interval=200,
log_iters=10,
num_workers=0,
losses=losses,
use_vdl=True)
from paddleseg.models import BiSeNetV2
model = BiSeNetV2(num_classes=2,
lambd=0.25,
align_corners=False,
pretrained=None)
model_path = 'output/best_model/model.pdparams'
if model_path:
para_state_dict = paddle.load(model_path)
model.set_dict(para_state_dict)
print('Loaded trained params of model successfully')
else:
raise ValueError('The model_path is wrong: {}'.format(model_path))
# 构建验证用的transforms
import paddleseg.transforms as T
transforms = [
T.Resize(target_size=(512, 512)),
T.Normalize()
]
# 构建验证集
from paddleseg.datasets import OpticDiscSeg
val_dataset = OpticDiscSeg(
dataset_root='data/optic_disc_seg',
transforms=transforms,
mode='val'
)
from paddleseg.core import evaluate
evaluate(
model,
val_dataset)
evaluate(
model,
val_dataset,
aug_eval=True,
scales=[0.75, 1.0, 1.25],
flip_horizontal=True)
from paddleseg.models import BiSeNetV2
model = BiSeNetV2(num_classes=2,
lambd=0.25,
align_corners=False,
pretrained=None)
import paddleseg.transforms as T
transforms = T.Compose([
T.Resize(target_size=(512, 512)),
T.RandomHorizontalFlip(),
T.Normalize()
])
import os
def get_image_list(image_path):
"""Get image list"""
valid_suffix = [
'.JPEG', '.jpeg', '.JPG', '.jpg', '.BMP', '.bmp', '.PNG', '.png'
]
image_list = []
image_dir = None
if os.path.isfile(image_path):
if os.path.splitext(image_path)[-1] in valid_suffix:
image_list.append(image_path)
elif os.path.isdir(image_path):
image_dir = image_path
for root, dirs, files in os.walk(image_path):
for f in files:
if os.path.splitext(f)[-1] in valid_suffix:
image_list.append(os.path.join(root, f))
else:
raise FileNotFoundError(
'`--image_path` is not found. it should be an image file or a directory including images'
)
if len(image_list) == 0:
raise RuntimeError('There are not image file in `--image_path`')
return image_list, image_dir
image_path = 'data/optic_disc_seg/JPEGImages/N0010.jpg' # 也可以输入一个包含图像的目录
image_list, image_dir = get_image_list('data/optic_disc_seg/JPEGImages/N0010.jpg')
图片预测结果将会输出到保存路径save_dir
当中。该路径下将生成2个目录,pseudo_color_prediction
保存伪彩色预测结果图,可直接查看各个类别的预测效果,added_prediction
保存伪彩色预测结果和原图的叠加效果图。
from paddleseg.core import predict
predict(
model,
model_path='output/best_model/model.pdparams',
transforms=transforms,
image_list=image_list,
image_dir=image_dir,
save_dir='output/results'
)
预测效果如下:
- 伪彩色预测结果
- 叠加效果