-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrange.go
431 lines (407 loc) · 15.9 KB
/
range.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
package charts
import (
"math"
"strconv"
"github.com/go-analyze/charts/chartdraw"
"github.com/go-analyze/charts/chartdraw/matrix"
)
const rangeMinPaddingPercentMin = 0.0 // increasing could result in forced negative y-axis minimum
const rangeMinPaddingPercentMax = 20.0
const rangeMaxPaddingPercentMin = 5.0 // set minimum spacing at the top of the graph
const rangeMaxPaddingPercentMax = 20.0
const zeroSpanAdjustment = 1
// axisRange represents the calculated range for the axis, as well as values for fitting labels on the range.
type axisRange struct {
isCategory bool
// labels are the rendered labels, 1:1 for categories or the range value labels to render
labels []string
// dataStartIndex specifies what index the label values should start from.
dataStartIndex int
tickCount int
divideCount int
labelCount int
min, max float64 // only valid if !isCategory
size int
textMaxWidth int
textMaxHeight int
labelRotation float64
labelFontStyle FontStyle
}
// calculateValueAxisRange centralizes the logic for numeric axes, picking a scale and label count that is human friendly.
func calculateValueAxisRange(p *Painter, isVertical bool, axisSize int,
minCfg, maxCfg, rangeValuePaddingScale *float64,
labelsCfg []string, dataStartIndex int,
labelCountCfg int, labelUnit float64, labelCountAdjustment int,
seriesList seriesList, yAxisIndex int, stackSeries bool,
valueFormatter ValueFormatter,
labelRotation float64, fontStyle FontStyle) axisRange {
// calculate the range
minVal, maxVal, sumMax := getSeriesMinMaxSumMax(seriesList, yAxisIndex, stackSeries)
if stackSeries { // If stacked, maxVal should be the maxVal data point of all series summed together
maxVal = sumMax
}
minPadScale, maxPadScale := 1.0, 1.0
if rangeValuePaddingScale != nil {
minPadScale = *rangeValuePaddingScale
maxPadScale = minPadScale
}
if minCfg != nil && *minCfg < minVal {
minVal = *minCfg
minPadScale = 0.0
}
if maxCfg != nil && *maxCfg > maxVal {
maxVal = *maxCfg
maxPadScale = 0.0
}
decimalData := minVal != math.Floor(minVal) || (maxVal-minVal) != math.Floor(maxVal-minVal)
// Label counts and range padding are linked together to produce a user-friendly graph.
// First when considering padding we want to prefer a zero axis start if reasonable, and add a slight
// padding to the maxVal so there is a little space at the top of the graph. We also want to pick
// a maxVal value and label count that will result in round intervals on the axis, or match the user
// supplied unit (if provided).
//
// In order to accomplish this, we estimate the label count (if necessary), produce some labels to measure,
// calculate our label limit, pad the range, then once the label count is finalized produce the final labels.
initialLabelCount := labelCountCfg
if initialLabelCount < 1 {
if labelUnit > 0 {
initialLabelCount = int((maxVal-minVal)/labelUnit) + 1
} else {
initialLabelCount =
chartdraw.MinInt(chartdraw.MaxInt(int(maxVal-minVal)+1, defaultYAxisLabelCountLow),
defaultYAxisLabelCountHigh)
if decimalData { // if there is a decimal, we double our labels to provide more detail
initialLabelCount = chartdraw.MinInt(initialLabelCount*2, defaultYAxisLabelCountHigh)
}
}
}
initialLabelCount = chartdraw.MaxInt(initialLabelCount+labelCountAdjustment, minimumAxisLabels)
labels := valueLabels(labelsCfg, valueFormatter, minVal, maxVal, initialLabelCount)
labelW, labelH := p.measureTextMaxWidthHeight(labels, labelRotation, fontStyle)
// If user gave an explicit LabelCount, then we do NOT do a collision check
// For default logic we want to make sure we choose a label count that is visually appealing
padLabelCount := initialLabelCount
if labelCountCfg == 0 {
maxLabelCount := padLabelCount
if isVertical {
if labelH > 0 { // avoid divide by zero
maxLabelCount = axisSize / labelH
}
} else {
if labelW > 0 {
// add to the label width to give good spacing
maxLabelCount = axisSize / (labelW + chartdraw.MinInt(20, labelW))
}
}
if maxLabelCount < padLabelCount {
padLabelCount = chartdraw.MaxInt(maxLabelCount, minimumAxisLabels)
}
if labelUnit > 0 && padLabelCount > minimumAxisLabels {
// reduce padLabelCount to ensure it remains within the max count if we have to add one to meet unit expectations
padLabelCount--
}
}
minPadded, maxPadded := padRange(padLabelCount, minVal, maxVal, minPadScale, maxPadScale)
labelCount := padLabelCount
// if the user set only a unit we may need to refine again after padding to meet th eunit
if labelCountCfg == 0 && labelUnit > 0 {
if maxCfg == nil {
// if no max enforced, round up max to a multiple of the unit
maxPadded = math.Trunc(math.Ceil(maxPadded/labelUnit) * labelUnit)
}
// ensure we have a label count that will meet the requested units
if fastCalc := int((maxPadded-minPadded)/labelUnit) + 1; fastCalc > minimumAxisLabels && fastCalc < defaultYAxisLabelCountHigh {
// trivial case that can avoid the loop search below
labelCount = fastCalc
}
currentInterval := (maxPadded - minPadded) / float64(padLabelCount-1)
remainder := math.Mod(currentInterval, labelUnit)
if math.Abs(remainder) > matrix.DefaultEpsilon || math.Abs(labelUnit-remainder) > matrix.DefaultEpsilon {
// Search for a candidate labelCount by adjusting downward and upward to find the closest possible
for delta := 0; ; delta++ {
// Try candidate below, ensuring it doesn't drop below 4
if candidate := padLabelCount - delta; candidate >= minimumAxisLabels*2 {
candidateInterval := (maxPadded - minPadded) / float64(candidate-1)
remainder = math.Mod(candidateInterval, labelUnit)
if math.Abs(remainder) < matrix.DefaultEpsilon || math.Abs(labelUnit-remainder) < matrix.DefaultEpsilon {
labelCount = candidate
break
}
}
// Try candidate above
candidate := padLabelCount + delta
candidateInterval := (maxPadded - minPadded) / float64(candidate-1)
remainder = math.Mod(candidateInterval, labelUnit)
if math.Abs(remainder) < matrix.DefaultEpsilon || math.Abs(labelUnit-remainder) < matrix.DefaultEpsilon {
labelCount = candidate
break
}
// Continue expanding the search if no candidate matches
}
}
}
if len(labels) != labelCount || minVal-minPadded > matrix.DefaultEpsilon || maxPadded-maxVal > matrix.DefaultEpsilon {
// regenerate labels to meet new scale
labels = valueLabels(labelsCfg, valueFormatter, minPadded, maxPadded, labelCount)
labelW, labelH = p.measureTextMaxWidthHeight(labels, labelRotation, fontStyle)
}
return axisRange{
isCategory: false,
labels: labels,
dataStartIndex: dataStartIndex,
divideCount: len(labels),
tickCount: labelCount,
labelCount: labelCount,
min: minPadded,
max: maxPadded,
size: axisSize,
textMaxWidth: labelW,
textMaxHeight: labelH,
labelRotation: labelRotation,
labelFontStyle: fontStyle,
}
}
// calculateCategoryAxisRange does the same for category axes (common for X-axis in line/bar charts).
func calculateCategoryAxisRange(p *Painter, axisSize int, isVertical bool, extraSpace bool,
labels []string, dataStartIndex int,
labelCountCfg int, labelCountAdjustment int, labelUnit float64,
seriesList seriesList, labelRotation float64, fontStyle FontStyle) axisRange {
// If user provided no labels, use series names.
// If provided only partially, fill in the remaining labels.
if len(labels) == 0 {
labels = seriesList.names()
} else {
for i := len(labels); i < seriesList.len(); i++ {
seriesName := seriesList.getSeriesName(i)
if seriesName == "" {
seriesName = strconv.Itoa(i + 1)
}
labels = append(labels, seriesName)
}
}
dataCount := len(labels)
textW, textH := p.measureTextMaxWidthHeight(labels, labelRotation, fontStyle)
labelCount := labelCountCfg
if labelCount <= 0 {
labelCount = dataCount
} else if labelCount > dataCount {
labelCount = dataCount
}
labelCount = chartdraw.MaxInt(labelCount+labelCountAdjustment, minimumAxisLabels)
// validate the labels fit, otherwise reduce the count
if labelCountCfg == 0 {
maxLabelCount := labelCount
if isVertical {
if textH > 0 {
var extra int
if extraSpace {
extra = 10
}
maxLabelCount = chartdraw.MaxInt(axisSize/(textH+extra), minimumAxisLabels)
}
} else {
if textW > 0 {
// add a little extra padding for horizontal layouts
extra := textW
if !extraSpace {
extra /= 2
}
maxLabelCount = chartdraw.MaxInt(axisSize/(textW+extra), minimumAxisLabels)
}
}
if labelUnit > 0 {
// If the user gave a 'unit', figure out how many 'units' fit
multiplier := 1.0
for {
count := ceilFloatToInt(float64(dataCount) / (labelUnit * multiplier))
if count > maxLabelCount {
multiplier++
} else {
labelCount = chartdraw.MaxInt(count, minimumAxisLabels)
break
}
}
} else if maxLabelCount < labelCount {
// Instead of a slight reduction, we choose a skip factor (step) so that we skip every other label until
// we are within our limit.
step := 1
candidateCount := 2 + (dataCount-2)/step
for candidateCount > maxLabelCount {
step++
candidateCount = 2 + (dataCount-2)/step
}
labelCount = chartdraw.MaxInt(candidateCount, minimumAxisLabels)
}
}
// ensure there are not too many ticks, we want them relative and related to the label positions
tickCount := dataCount
if tickCount > labelCount*2 {
// it's difficult to choose a tick count that allows multiple ticks while staying lined up with the labels
// TODO - I would like to improve this, but for simplicity we will match the label count if ticks are too dense
tickCount = labelCount
}
return axisRange{
isCategory: true,
labels: labels,
dataStartIndex: dataStartIndex,
divideCount: dataCount,
tickCount: tickCount,
labelCount: labelCount,
size: axisSize,
textMaxWidth: textW,
textMaxHeight: textH,
labelRotation: labelRotation,
labelFontStyle: fontStyle,
}
}
func valueLabels(labelsCfg []string, valueFormatter ValueFormatter, min, max float64, labelCount int) []string {
labels := make([]string, labelCount)
offset := (max - min) / float64(labelCount-1)
for i := range labels {
if i < len(labelsCfg) {
labels[i] = labelsCfg[i]
} else {
labels[i] = valueFormatter(min + float64(i)*offset)
}
}
return labels
}
func padRange(divideCount int, min, max, minPaddingScale, maxPaddingScale float64) (float64, float64) {
if minPaddingScale <= 0.0 && maxPaddingScale <= 0.0 {
return min, max
}
// scale percents for min value
scaledMinPadPercentMin := rangeMinPaddingPercentMin * minPaddingScale
scaledMinPadPercentMax := rangeMinPaddingPercentMax * minPaddingScale
// scale percents for max value
scaledMaxPadPercentMin := rangeMaxPaddingPercentMin * maxPaddingScale
scaledMaxPadPercentMax := rangeMaxPaddingPercentMax * maxPaddingScale
minResult := min
spanIncrement := (max - min) * 0.01 // must be 1% of the span
var spanIncrementMultiplier float64
// find a min value to start our range from
// we prefer (in order, negative if necessary), 0, 1, 10, 100, ..., 2, 20, ..., 5, 50, ...
updatedMin := false
rootLoop:
for _, multiple := range []float64{1.0, 2.0, 5.0} {
if min < 0 {
multiple *= -1 // convert multiple sign to adjust targetVal correctly
}
expoLoop:
for expo := -1.0; expo < 6; expo++ {
if expo == -1.0 && multiple != 1.0 {
continue expoLoop // we only want to test targetVal 0 once
}
// use 10^expo so that we prefer 0, 10, 100, etc numbers
targetVal := math.Floor(math.Pow(10, expo)) * multiple // Math.Floor to convert 0.1 from -1 expo into 0
if targetVal < min-(spanIncrement*scaledMinPadPercentMax) {
break expoLoop // no match possible, target value will only get further from start
} else if targetVal <= min-(spanIncrement*scaledMinPadPercentMin) {
// targetVal can be between our span increment increases, calculate and set result
updatedMin = true
spanIncrementMultiplier = (min - targetVal) / spanIncrement
minResult = targetVal
break rootLoop
} // else try again to meet minimum padding requirements
}
}
if !updatedMin {
minResult, spanIncrementMultiplier =
friendlyRound(min, spanIncrement, scaledMinPadPercentMin,
scaledMinPadPercentMin, scaledMinPadPercentMax, false)
}
if minTrunk := math.Trunc(minResult); minTrunk <= min-(spanIncrement*scaledMinPadPercentMin) {
minResult = minTrunk // remove possible float multiplication inaccuracies
}
if max == minResult {
// no adjustment was made and there is no span, because of that the max calculation below can't function
// for that reason we apply a default constant span, still wanting to prefer a zero start if possible
if minResult == 0 {
return minResult, minResult + (2 * zeroSpanAdjustment)
}
return minResult - zeroSpanAdjustment, minResult + zeroSpanAdjustment
} else if maxPaddingScale <= 0.0 {
return minResult, max
} else if math.Abs(max) < 10 {
return minResult, math.Ceil(max) + 1
}
// update max to provide ideal padding and human friendly intervals
interval := (max - minResult) / float64(divideCount-1)
roundedInterval, _ := friendlyRound(interval, spanIncrement/float64(divideCount-1),
math.Max(spanIncrementMultiplier, scaledMaxPadPercentMin),
scaledMaxPadPercentMin, scaledMaxPadPercentMax, true)
maxResult := minResult + (roundedInterval * float64(divideCount-1))
if maxTrunk := math.Trunc(maxResult); maxTrunk >= max+(spanIncrement*scaledMaxPadPercentMin) {
maxResult = maxTrunk // remove possible float multiplication inaccuracies
}
return minResult, maxResult
}
func friendlyRound(val, increment, defaultMultiplier, minMultiplier, maxMultiplier float64, add bool) (float64, float64) {
absVal := math.Abs(val)
for orderOfMagnitude := math.Floor(math.Log10(absVal)); orderOfMagnitude > 0; orderOfMagnitude-- {
roundValue := math.Pow(10, orderOfMagnitude)
var proposedVal float64
var proposedMultiplier float64
for roundAdjust := 0.0; roundAdjust < 9.0; roundAdjust++ {
if add {
proposedVal = (math.Ceil(absVal/roundValue) * roundValue) + (roundValue * roundAdjust)
} else {
proposedVal = (math.Floor(absVal/roundValue) * roundValue) + (roundValue * roundAdjust)
}
if val < 0 { // Apply the original sign back to proposedVal
proposedVal *= -1
}
if add {
proposedMultiplier = (proposedVal - val) / increment
} else {
proposedMultiplier = (val - proposedVal) / increment
}
if proposedMultiplier > maxMultiplier {
break // shortcut inner loop as multiplier will only go up
} else if proposedMultiplier > minMultiplier {
return proposedVal, proposedMultiplier
}
}
if proposedMultiplier <= minMultiplier {
break // shortcut outer loop if multiplier is below the min after adjust check, as this will only get smaller
}
}
// No match found, let's see if we can just round to the next whole number
if (increment*maxMultiplier) >= 1.0 && val != math.Trunc(val) {
var proposedVal float64
var proposedMultiplier float64
if add {
proposedVal = math.Ceil(val)
proposedMultiplier = (proposedVal - val) / increment
} else {
proposedVal = math.Floor(val)
proposedMultiplier = (val - proposedVal) / increment
}
return proposedVal, proposedMultiplier
}
// else, just adjust based off default multiplier
if add {
return val + (increment * defaultMultiplier), defaultMultiplier
} else {
return val - (increment * defaultMultiplier), defaultMultiplier
}
}
func (r axisRange) getHeight(value float64) int {
if r.max <= r.min {
return 0
}
v := (value - r.min) / (r.max - r.min)
return int(v * float64(r.size))
}
func (r axisRange) getRestHeight(value float64) int {
return r.size - r.getHeight(value)
}
// getRange returns a range at a given index.
func (r axisRange) getRange(index int) (float64, float64) {
unit := float64(r.size) / float64(r.divideCount)
return unit * float64(index), unit * float64(index+1)
}
// autoDivide divides the axis size by the configured count.
func (r axisRange) autoDivide() []int {
return autoDivide(r.size, r.divideCount)
}