-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgo-echarts.py
65 lines (50 loc) · 2.25 KB
/
go-echarts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import gradio as gr
from dotenv import load_dotenv
from langchain_openai import AzureChatOpenAI
from langchain_openai import AzureOpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import GitLoader
from langchain.chains import RetrievalQA
load_dotenv(verbose=True)
go_echarts = 'https://github.com/go-echarts/go-echarts'
go_echarts_examples = 'https://github.com/go-echarts/examples'
victories_db = 'victories_db'
def load_go_echarts(fetch_hard=False):
if not fetch_hard:
if os.path.exists(victories_db):
print('Loading go-echarts from local index')
return FAISS.load_local(victories_db, AzureOpenAIEmbeddings())
print('Loading go-echarts and embedding')
loader = GitLoader(repo_path="repo/go-echarts", clone_url=go_echarts, branch="master")
loader_examples = GitLoader(repo_path="repo/examples", clone_url=go_echarts_examples, branch="master")
pages_go_echarts = loader.load_and_split()
pages_go_echarts_examples = loader_examples.load_and_split()
pages_go_echarts.extend(pages_go_echarts_examples)
db = FAISS.from_documents(pages_go_echarts, AzureOpenAIEmbeddings())
db.save_local(victories_db)
return db
def bot(question, history):
# Mention scope hardcode with prefix as workaround
question = "In go-echarts, " + question
answer = qa_client.run(question)
if not answer:
return "Could you provide more details on it? I can not answer it right now."
return answer
def gui():
bot_ui = gr.ChatInterface(
fn=bot,
title="Hello go-echarts",
chatbot=gr.Chatbot(height=600),
)
print("Bot setup: ")
bot_ui.launch(server_name="localhost", server_port=12345)
if __name__ == "__main__":
openai_client = AzureChatOpenAI(deployment_name="gpt-35-turbo", temperature=0.2)
go_echarts_db = load_go_echarts()
qa_client = RetrievalQA.from_chain_type(openai_client,
retriever=go_echarts_db.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": 0.5})
)
gui()