-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.go
99 lines (81 loc) · 2.52 KB
/
train.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
package xgb
import (
"fmt"
"go4ml.xyz/base/fu"
"go4ml.xyz/base/model"
"go4ml.xyz/base/tables"
"go4ml.xyz/xgb/capi"
"go4ml.xyz/zorros"
"unsafe"
)
func train(e Model, dataset model.Dataset, w model.Workout) (report *model.Report, err error) {
t, err := dataset.Source.Collect()
if err != nil {
return
}
Test := fu.Fnzs(dataset.Test, model.TestCol)
if fu.IndexOf(Test, t.Names()) < 0 {
err = zorros.Errorf("dataset does not have column `%v`", Test)
return
}
Label := fu.Fnzs(dataset.Label, model.LabelCol)
if fu.IndexOf(Label, t.Names()) < 0 {
err = zorros.Errorf("dataset does not have column `%v`", Label)
return
}
features := t.OnlyNames(dataset.Features...)
test, train, err := t.MatrixWithLabelIf(features, Label, Test, true)
if err != nil {
return
}
m := matrix32(train)
defer m.Free()
m2 := matrix32(test)
defer m2.Free()
predicts := fu.Fnzs(e.Predicted, model.PredictedCol)
xgb := &xgbinstance{capi.Create2(m.handle, m2.handle), features, predicts}
defer xgb.Close()
if e.Algorithm != booster("") {
xgb.setparam(e.Algorithm)
}
if e.Function != objective("") {
xgb.setparam(e.Function)
}
if e.LearningRate != 0 {
capi.SetParam(xgb.handle, "eta", fmt.Sprint(e.LearningRate))
}
if e.MaxDepth != 0 {
capi.SetParam(xgb.handle, "max_depth", fmt.Sprint(e.MaxDepth))
}
capi.SetParam(xgb.handle, "num_feature", fmt.Sprint(len(features)))
if e.Function == Softprob || e.Function == Softmax {
x := int(fu.Maxr(fu.Maxr(0, train.Labels...), test.Labels...))
if x < 0 {
panic(zorros.Errorf("labels don't contain enough classes or label values is incorrect"))
}
capi.SetParam(xgb.handle, "num_class", fmt.Sprint(x+1))
}
testLabels := test.AsLabelColumn()
trainLabels := train.AsLabelColumn()
for done := false; w != nil && !done; w = w.Next() {
capi.Update(xgb.handle, w.Iteration(), m.handle)
m0, _ := xgb.metrics(m.handle, trainLabels, w.TrainMetrics())
m1, d := xgb.metrics(m2.handle, testLabels, w.TestMetrics())
if report, done, err = w.Complete(model.MemorizeMap{"model": mnemosyne{xgb}}, m0, m1, d); err != nil {
return nil, zorros.Wrapf(err, "tailed to complete model: %s", err.Error())
}
}
return
}
func (xgb *xgbinstance) metrics(m unsafe.Pointer, label *tables.Column, mu model.MetricsUpdater) (fu.Struct, bool) {
y := capi.Predict(xgb.handle, m, 0)
pred := tables.Matrix{
Features: y,
Labels: nil,
Width: len(y) / label.Len(),
Length: label.Len(),
LabelsWidth: 0,
}
model.BatchUpdateMetrics(pred.AsColumn(), label, mu)
return mu.Complete()
}