Skip to content

Latest commit

 

History

History
 
 

2022.2 Versal 2D-FFT Implementation Using Vitis Acceleration Library Tutorial (XD073)

AI Engine Implementation

Table of Contents

Building the Design

Hardware Design Details

Software Design Details

Performance Details

Building the Design

Design Build

Design Build

In this section, you will build and run the 2D-FFT design using the AI Engine implementation. You will compile the AI Engine design and integrate it into a larger system design (including the PL kernels and PS host application). Review the Integrating the Application section in the AI Engine Documentation for the general flow.

At the end of this section, the design flow will generate a new directory (called build/). Underneath are sub-directories named (cint16_dsns-cfloat_dsns)/fft2d_$(MAT_ROWS)x$(MAT_COLS)/x$(FFT_2D_INSTS)/ (for example, cint16_dsns/fft2d_1024x2048/x1/) depending on the datatype ${FFT_2D_DT}, value of matrix dimensions ${MAT_ROWS}, ${MAT_COLS} and the number of instances $(FFT_2D_INSTS) chosen in the build. Each sub-directory contains the hw_emu/ and/or hw/ subfolders. The respective subfolders contain Work/ and libadf.a, outputs from the AI Engine compiler, the host app executable and the builds, targeted to hw or hw_emu respectively. The hw_emu/ subfolder contains the build for hardware emulation. The hw/ subfolder contains the build for hardware run on a VCK190 board.

Make Steps

Make Steps

To run the following make steps (that is, make kernels, make graph, and so on), you must be in the AIE/ folder. The options that can be specified in the make steps are as follows.

TARGET: This can be set to hw or hw_emu to build the design in the hardware or hardware emulation flow respectively. The default option is hw_emu.

FFT_2D_INSTS: This can be set to 1, 5, or 10 to build the design with the number of kernel instances. The default is 1.

ITER_CNT: The number of iterations the design is run. The default is 8.

FFT_2D_PT: FFT 2D point. Permissible values are 64, 128, 256, 512, and 2048.

FFT_2D_DT: FFT 2D Datatype. Permissible values are 0 and 1, for cint16 and cfloat datatypes.

MAT_ROWS x MAT_COLS: Dimensions of the matrix (number of rows in the input matrix x number of cols in the input matrix). Automatically configured as FFT_2D_PT/2, FFT_2D_PT. Permissible values are 32x64, 64x128, 128x256, 256x512, and 1024x2048. The default is 1024x2048.

EN_TRACE: Flag to enable trace profiling. 0 is disabled and 1 is enabled. The default is 0 (disabled).

The Makefile uses the following directory references:

## Relative fft_2d directory
RELATIVE_PROJECT_DIR := ./

## Absolute fft_2d directory = <user path>/Tutorials/AI_Engine/fft_2d
PROJECT_REPO := $(shell readlink -f $(RELATIVE_PROJECT_DIR))

DESIGN_REPO  := $(PROJECT_REPO)/design
AIE_SRC_REPO := $(DESIGN_REPO)/aie_src
HOST_APP_SRC := $(DESIGN_REPO)/host_app_src
PL_SRC_REPO  := $(DESIGN_REPO)/pl_src

SYSTEM_CONFIGS_REPO    := $(DESIGN_REPO)/system_configs
PROFILING_CONFIGS_REPO := $(DESIGN_REPO)/profiling_configs
EXEC_SCRIPTS_REPO      := $(DESIGN_REPO)/exec_scripts
VIVADO_METRICS_SCRIPTS_REPO := $(DESIGN_REPO)/vivado_metrics_scripts

BASE_BLD_DIR     := $(PROJECT_REPO)/build
FFT_2D_DT_DIR    := $(BASE_BLD_DIR)/cint16_dsns
FFTPT_BLD_DIR    := $(FFT_2D_DT_DIR)/fft2d_$(MAT_ROWS)x$(MAT_COLS)
INSTS_BLD_DIR    := $(FFTPT_BLD_DIR)/x$(FFT_2D_INSTS)
BUILD_TARGET_DIR := $(INSTS_BLD_DIR)/$(TARGET)

REPORTS_REPO := $(PROJECT_REPO)/reports_dir
BLD_REPORTS_DIR := $(REPORTS_REPO)/$(FFT_2D_DT_DIR_VAL)/fft2d_$(MAT_ROWS)x$(MAT_COLS)/x$(FFT_2D_INSTS)

EMBEDDED_PACKAGE_OUT := $(BUILD_TARGET_DIR)/package
EMBEDDED_EXEC_SCRIPT := run_script.sh

WORK_DIR         := Work
Build the Entire Design with a Single Command

Build the Entire Design with a Single Command

If you are already familiar with the AI Engine and Vitis kernel compilation flows, you can build the entire design for each case of FFT_2D_INSTS with one command:

make run (default hardware emulation, cint16 datatype, 1 instance, iterations=8, matrix dimentions rows=1024 and columns=2048, no trace-profiling )

or

make run TARGET=hw FFT_2D_DT=0 FFT_2D_INSTS=5 ITER_CNT=16 EN_TRACE=1 FFT_2D_PT=64 (hardware, cint16 datatype, 5 instances, 16 iterations, enable trace profiling, matrix dimentions rows=32 and columns=64 )

This command runs the make kernels,make graph,make xsa,make application,make package, and make run_emu for hardware emulation or to run on hardware (VCK190 board) depending on the TARGET you specify. The settings also apply to the individual make steps listed below.

The generated files for each FFT_2D_INSTS are placed under an individual directory: $(BUILD_TARGET_DIR)/. Each make step to build the design is specified in the following sections. These sections also detail the options used and the location of input and output files in each case.

make kernels: Compiling PL Kernels

make kernels: Compiling PL Kernels

In this step, the Vitis compiler takes any Vitis compiler kernels (RTL or HLS C) in the PL region of the target platform (xilinx_vck190_base_202220_1) and the AI Engine kernels and graph and compiles them into their respective XO files. The following commands compile the kernels (default TARGET=hw_emu, FFT_2D_INSTS=1, ITER_CNT=8, FFT_2D_DT=0 and FFT_2D_PT=2048).

make kernels

The expanded command is as follows (for dma_hls):

mkdir -p $(BUILD_TARGET_DIR); \

cd $(BUILD_TARGET_DIR); \

v++ --target hw_emu --hls.clock 250000000:dma_hls --platform xilinx_vck190_base_202220_1 \
   --save-temps --temp_dir $(BUILD_TARGET_DIR)/_x --verbose -g -c -k dma_hls -D FFT_2D_DT=0 \
   $(DESIGN_REPO)/pl_src/dma_hls.cpp -o $(BUILD_TARGET_DIR)/dma_hls.hw_emu.xo

See this page for a detailed description of all Vitis compiler switches. The following table provides a summary of the switches used.

Switch Description
--target | -t [hw|hw_emu] Specifies the build target.
--platform | -f Specifies the name of a supported acceleration platform as specified by the $PLATFORM_REPO_PATHS environment variable or the full path to the platform XPFM file.
--save-temps | -s Directs the Vitis compiler command to save intermediate files/directories created during the compilation and link process. Use the --temp_dir option to specify a location to write the intermediate files to.
--temp_dir This allows you to manage the location where the tool writes temporary files created during the build process. The temporary results are written by the Vitis compiler, and then removed, unless the --save-temps option is also specified.
--verbose Display verbose/debug information.
--compile | -c Required for compilation to generate XO files from kernel source files.
--kernel <arg>|-k <arg> Compile only the specified kernel from the input file. Only one -k option is allowed per Vitis compiler command.
--output | -o Specifies the name of the output file generated by the V++ command. The DMA HLS kernels output should be XO.
Input Description
$(PL_SRC_REPO)/dma_hls.cpp Defines the data mover PL kernel.
Output Description
$(BUILD_TARGET_DIR)/dma_hls.hw_emu.xo The data mover kernel object file.
make graph: Creating the AI Engine ADF Graph for the Vitis Compiler Flow

make graph: Creating the AI Engine ADF Graph for Vitis Compiler Flow

An ADF graph can be connected to an extensible Vitis platform (the graph I/Os can be connected either to platform ports or to ports on Vitis kernels through Vitis compiler connectivity directives).

  • The AI Engine ADF C++ graph of the design contains AI Engine kernels and PL kernels.
  • All interconnects between kernels are defined in the C++ graph
  • All interconnections to external I/O are fully specified in the C++ simulation testbench (graph.cpp) that instantiates the C++ ADF graph object.

To compile the graph using the Makefile flow type (default FFT_2D_DT=0, TARGET=hw_emu, FFT_2D_INSTS=1, ITER_CNT=8, EN_TRACE=0, FFT_2D_PT=2048):

make graph

The following AI Engine compiler command compiles the AI Engine design graph:

cd $(BUILD_TARGET_DIR); \

aiecompiler -include=$(AIE_SRC_REPO) -include=<DSPLIB_ROOT>/L1/include/aie \
   -include=<DSPLIB_ROOT>/L1/src/aie \
   -include=<DSPLIB_ROOT>/L1/tests/aie/inc \
   -include=<DSPLIB_ROOT>/L1/tests/aie/src \
   -include=<DSPLIB_ROOT>/L2/include/aie \
   -include=<DSPLIB_ROOT>/L2/tests/aie/common/inc \
   --verbose --Xpreproc="-DFFT2D_INSTS=1" --Xpreproc="-DMAT_ROWS=1024" --Xpreproc="-DMAT_COLS=2048" --Xpreproc="-DFFT_2D_DT=0" \
   --platform=<PLATFORM_REPO_PATHS/xilinx_vck190_base_202220_1>/xilinx_vck190_base_202220_1.xpfm \
   --log-level=5 --test-iterations=2 --dataflow --heapsize=7000 \
   --Xchess="main:bridge.llibs=softfloat m" --workdir=Work $(AIE_SRC_REPO)/graph.cpp 2>&1 | tee -a aiecompiler.log 

See this page for full AI Engine programming environment documentation.

The following table provides a summary of the switches used.

Switch Description
--include=<string> Specify compile-time include directory (zero or more).
--verbose|-v Verbose output of the AI Engine compiler emits compiler messages at various stages of compilation. These debug and tracing logs provide useful messages on the compilation process.
--Xpreproc="-D<Pre-processor Macro String>" Specify compile time macro.
--Xchess="<Chess Make Options>" Specify compile time chess make options; "main:bridge.llibs=softfloat m" enables floating point operations.
--heapsize=<int> Heap size in bytes.
--log-level=<int> Log level for verbose logging (default=1).
--workdir=<string> By default, the compiler writes all outputs to a sub-directory of the current directory, called Work. Use this option to specify a different output directory.

The following is a description of the output objects that results from executing the AI Engine compiler (aiecompiler) command.

Inputs Sources Description
$(AIE_SRC_REPO)/graph.cpp Defines the row wise and col wise FFT graph objects.
Output Objects Description
$(BUILD_TARGET_DIR)/libadf.a Compiled AI Engine design graph.
$(BUILD_TARGET_DIR)/Work/ Directory that contains all outputs of the AI Engine compiler.
make xsa: Using the Vitis Tools to Link AI Engine and HLS Kernels with the Platform

make xsa: Using the Vitis Tools to Link AI Engine and HLS Kernels with the Platform

After the AI Engine kernels and graph and PL HLS kernels have been compiled, you can use the Vitis compiler to link them with the platform to generate a XSA file.

The Vitis tools allow you to integrate the AI Engine, HLS, and RTL kernels into an existing extensible platform. This is an automated step from a software developer perspective where the platform chosen is provided by the hardware designer. Alternatively, you can opt to use one of the many extensible base platforms provided by Xilinx, and use the Vitis tools to build the hardware design and integrate the AI Engine and PL kernels into it.

To test this feature in this tutorial, use the base VCK190 platform to build the design. The command to run this step is shown in the following example (default TARGET=hw_emu, FFT_2D_INSTS=1, ITER_CNT=8, EN_TRACE=0, FFT_2D_PT=2048):

make xsa

The expanded command is as follows:

cd $(BUILD_TARGET_DIR);	\

v++ -l --platform xilinx_vck190_base_202220_1 --save-temps \
   --temp_dir $(BUILD_TARGET_DIR)/_x --verbose -g --clock.freqHz 250000000:dma_hls_0 \
   --clock.defaultTolerance 0.001 --config $(SYSTEM_CONFIGS_REPO)/x1.cfg \
   --vivado.prop fileset.sim_1.xsim.simulate.log_all_signals=true \
   -t hw_emu -o $(BUILD_TARGET_DIR)/vck190_aie_fft_2d.hw_emu.xsa \
   $(BUILD_TARGET_DIR)/dma_hls.hw_emu.xo \
   $(BUILD_TARGET_DIR)/libadf.a

If EN_TRACE is enabled, the following Vitis compiler flags are also set:

   --profile.data dma_hls:all:all or profile.data dma_hls:all:strmInp_from_colwiseFFT (for higher instances) \
   --profile.trace_memory DDR

For higher values of FFT_2D_INSTS, only the strmInp_from_colwiseFFT port is profiled to avoid too much data.

See this page for a detailed description of Vitis linking options.

Switch Description
--platform | -f Specifies the name of a supported acceleration platform as specified by the $PLATFORM_REPO_PATHS environment variable or the full path to the platform XPFM file.
--save-temps | -s Directs the V++ command to save intermediate files/directories created during the compilation and link process. Use the --temp_dir option to specify a location to write the intermediate files to.
--temp_dir This allows you to manage the location where the tool writes temporary files created during the build process. The temporary results are written by the Vitis compiler, and then removed, unless the --save-temps option is also specified.
--verbose Display verbose/debug information.
--config <config_file> Specifies a configuration file containing V++ switches.
--output | -o Specifies the name of the output file generated by the V++ command. In this design the outputs of the DMA HLS kernels and the PL kernels interfacing with the AI Engine are in XO files.
--profile.data [<kernel_name>|all]:[<cu_name>|all]:[<interface_name>|all](:[counters|all]) Enables monitoring of data ports through the monitor IPs. This option needs to be specified during linking. See this page for detailed profiling options.
--profile.trace_memory <FIFO>:<size>|<MEMORY>[<n>] When building the hardware target (-t=hw), use this option to specify the type and amount of memory to use for capturing trace data. See this page for detailed profiling options.

The information to tell the linker how to connect the AI Engine and PL kernels together is described in a configuration file, system_configs/x$(FFT_2D_INSTS).cfg. The file describes the overall connection scheme of the system.

[connectivity]
nk=dma_hls:1:dma_hls_0

#Connections For FFT-2D Insts 0...
stream_connect=dma_hls_0.strmOut_to_rowiseFFT:ai_engine_0.DataIn0
stream_connect=ai_engine_0.DataOut0:dma_hls_0.strmInp_from_rowiseFFT
stream_connect=dma_hls_0.strmOut_to_colwiseFFT:ai_engine_0.DataIn1
stream_connect=ai_engine_0.DataOut1:dma_hls_0.strmInp_from_colwiseFFT

[advanced]
## Disable Profiling in hw_emu so that it is faster...
param=hw_emu.enableProfiling=false

## Export the xsa of the design..
param=compiler.addOutputTypes=hw_export

See this page for a detailed description of the Vitis compiler configuration file.

Switch Comment
--connectivity.nk Number of kernels. dma_hls:1:dma_hls_0 means that the Vitis compiler should instantiate one dma_hls kernel and name the instance dma_hls_0.
--connectivity.stream_connect How the kernels will connect to IPs, platforms, or other kernels. The output of the AI Engine compiler tells you the interfaces that need to be connected. dma_hls_0.strmOut_to_rowiseFFT:ai_engine_0.DataIn0 means that the Vitis compiler should connect the port strmOut_to_rowiseFFT of the dma_hls PL kernel to the shim channel of the AI Engine with the logical name DataIn0, defined in $(AIE_SRC_REPO)/graph.cpp as part of the PLIO instantiation.
param=compiler.addOutputTypes=hw_export This option tells the Vitis compiler that besides creating an XSA file, it also outputs an XSA file which is needed to create a post-Vivado fixed platform for Vitis software development.

The Vitis compiler calls the Vivado® IP integrator under the hood to build the design. The platform and kernels are input to the Vivado Design Suite, which produces a simulation XSA or an XSA after running place and route on the design. The point at which the XSA is produced from Vivado depends on the -target option set on the Vitis compiler command line.

You can now view the Vivado project, which is located in the $(BUILD_TARGET_DIR)/_x/link/vivado/vpl/prj directory. You have now have generated the XSA file that will be used to execute your design on the platform.

make application: Compiling the Host Application

make application: Compiling the Host Application

You can compile the host application by following the typical cross-compilation flow for the Cortex A72. To build the application, run the following command (default FFT_2D_DT=0, FFT_2D_INSTS=1, ITER_CNT=8, FFT_2D_PT=2048):

make application

or

cd $(BUILD_TARGET_DIR);	\

aarch64-xilinx-linux-g++ -mcpu=cortex-a72.cortex-a53 -march=armv8-a+crc -fstack-protector-strong\
   -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=$(SDKTARGETSYSROOT) -O -c\
   -std=c++14 -D__linux__ -D__PS_ENABLE_AIE__ -DXAIE_DEBUG -DFFT2D_INSTS=1 -DITER_CNT=8 -DFFT_2D_DT=0\
   -DMAT_ROWS=1024 -DMAT_COLS=2048 -I$(SDKTARGETSYSROOT)/usr/include/xrt -I$(XILINX_VITIS)/aietools/include/\
   -I$(SDKTARGETSYSROOT)/usr/include -I$(SDKTARGETSYSROOT)/usr/lib -I$(AIE_SRC_REPO) -I$(HOST_APP_SRC)\
   -I$(DSPLIB_ROOT)/L1/include/aie -I$(DSPLIB_ROOT)/L1/src/aie -I$(DSPLIB_ROOT)/L1/tests/aie/inc\
   -I$(DSPLIB_ROOT)/L1/tests/aie/src -I$(DSPLIB_ROOT)/L2/include/aie -I$(DSPLIB_ROOT)/L2/tests/aie/common/inc\
   $(BUILD_TARGET_DIR)/$(WORK_DIR)/ps/c_rts/aie_control_xrt.cpp -o $(BUILD_TARGET_DIR)/app_control.o

aarch64-xilinx-linux-g++ -mcpu=cortex-a72.cortex-a53 -march=armv8-a+crc -fstack-protector-strong\
   -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=$(SDKTARGETSYSROOT) -O -c\
   -std=c++14 -D__linux__ -D__PS_ENABLE_AIE__ -DXAIE_DEBUG -DFFT2D_INSTS=1 -DITER_CNT=8 -DFFT_2D_DT=0\
   -DMAT_ROWS=1024 -DMAT_COLS=2048 -I$(SDKTARGETSYSROOT)/usr/include/xrt -I$(XILINX_VITIS)/aietools/include/\
   -I$(SDKTARGETSYSROOT)/usr/include -I$(SDKTARGETSYSROOT)/usr/lib -I$(AIE_SRC_REPO) -I$(HOST_APP_SRC)\
   -I$(DSPLIB_ROOT)/L1/include/aie -I$(DSPLIB_ROOT)/L1/src/aie -I$(DSPLIB_ROOT)/L1/tests/aie/inc\
   -I$(DSPLIB_ROOT)/L1/tests/aie/src -I$(DSPLIB_ROOT)/L2/include/aie -I$(DSPLIB_ROOT)/L2/tests/aie/common/inc\
   $(HOST_APP_SRC)/fft_2d_aie_app.cpp -o $(BUILD_TARGET_DIR)/fft_2d_aie_app.o -L$(SDKTARGETSYSROOT)/usr/lib\
   -L$(XILINX_VITIS)/aietools/lib/aarch64.o -L$(XILINX_VITIS)/aietools/lib/lnx64.o -ladf_api_xrt -lxrt_coreutil

aarch64-xilinx-linux-g++ -mcpu=cortex-a72.cortex-a53 -march=armv8-a+crc -fstack-protector-strong
   -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=$(SDKTARGETSYSROOT)\
   $(BUILD_TARGET_DIR)/app_control.o $(BUILD_TARGET_DIR)/fft_2d_aie_app.o -L$(SDKTARGETSYSROOT)/usr/lib\
   -L$(XILINX_VITIS)/aietools/lib/aarch64.o -L$(XILINX_VITIS)/aietools/lib/lnx64.o\
   -ladf_api_xrt -lxrt_coreutil -o $(BUILD_TARGET_DIR)/fft_2d_aie_xrt.elf

See this page for XRT documentation. See this page for details of host application programming.

Switch Description
-O | Optimize. Optimizing compilation takes more time and a lot more memory for a large function. With -O, the compiler tries to reduce code size and execution time, without performing any of the optimizations that can take a great deal of compilation time.
-D__linux__
-DXAIE_DEBUG Enable debug interface capabilities where certain core status, event status, or stack trace can be dumped out.
-D<Pre-processor Macro String>=<value> Pass pre-processor macro definitions to the cross-compiler.
-I <dir> Add the directory dir to the list of directories to be searched for header files.
-o <file> Place output in file <file>. This applies regardless of the output being produced, whether it be an executable file, an object file, an assembler file, or preprocessed C code.
--sysroot=<dir> Use dir as the logical root directory for headers and libraries. For example, if the compiler normally searches for headers in /usr/include and libraries in /usr/lib, it instead searches dir/usr/include and dir/usr/lib. This is automatically set by the env_setup.sh script.
-l<library> Search the library named library when linking. The 2D-FFT tutorial requires the adf_api_xrt and xrt_coreutil libraries.
-L <dir> Add directory <dir> to the list of directories to be searched for -l.

The following is a description of the input sources compiled by the AI Engine compiler command.

Inputs Sources Description
$(HOST_APP_SRC)/fft_2d_aie_app.cpp Source application file for the fft_2d_aie_xrt.elf that will run on an A72 processor.
$(BUILD_TARGET_DIR)/Work/ps/c_rts/aie_control_xrt.cpp This is the AI Engine control code generated implementing the graph APIs for the Lenet graph.

The following is a description of the output objects that results from executing the AI Engine compiler command with the above inputs and options.

Output Objects Description
$(BUILD_TARGET_DIR)/fft_2d_aie_xrt.elf The executable that will run on an A72 processor.
make package: Packaging the Design

make package: Packaging the Design

With the AI Engine outputs created, as well as the new platform, you can now generate the programmable device image (PDI) and a package to be used on an SD card. The PDI contains all the executables, bitstreams, and configurations of the device. The packaged SD card directory contains everything to boot Linux, the generated applications, and the XCLBIN.

The command to run this step is as follows (default TARGET=hw_emu, EN_TRACE=0, FFT_2D_DT=0, FFT_2D_INSTS=1, and FFT_2D_PT=2048):

make package

or

cp $(PROJECT_REPO)/run_script.sh $(BUILD_TARGET_DIR)/
cd$(BUILD_TARGET_DIR);	\

v++ -p -t hw --save-temps --temp_dir $(BUILD_TARGET_DIR)/_x -f xilinx_vck190_base_202220_1\
   --package.rootfs $(XLNX_VERSAL)/rootfs.ext4\
   --package.kernel_image $(XLNX_VERSAL)/Image --package.boot_mode=sd\
   --package.out_dir $(BUILD_TARGET_DIR)/package --package.image_format=ext4\
   --package.sd_file $(BUILD_TARGET_DIR)/fft_2d_aie_xrt.elf \
   $(BUILD_TARGET_DIR)/vck190_aie_fft_2d.hw.xsa $(BUILD_TARGET_DIR)/libadf.a \
   --package.defer_aie_run \

If EN_TRACE is enabled, the following Vitis compiler flags are also set:

   --package.sd_file $(PROFILING_CONFIGS_REPO)/xrt.ini

If XRT_ROOT is set, the following Vitis compiler flags are also set:

   --package.sd_dir $(XRT_ROOT)

See this page for more details about packaging the system.

Switch Description
--target | -t [hw|hw_emu] Specifies the build target.
--package | -p Packages the final product at the end of the Vitis compile and link build process.
--package.rootfs <arg> Where <arg> specifies the absolute or relative path to a processed Linux root file system file. The platform RootFS file is available for download from xilinx.com. Refer to the Vitis Software Platform Installation for more information.
--package.kernel_image <arg> Where <arg> specifies the absolute or relative path to a Linux kernel image file. Overrides the existing image available in the platform. The platform image file is available for download from xilinx.com. Refer to the Vitis Software Platform Installation for more information.
--package.boot_mode <arg> Where <arg> specifies <ospi|qspi|sd>. Boot mode used for running the application in emulation or on hardware.
--package.image_format Where <arg> specifies the <ext4|fat32> output image file format. ext4 is the Linux file system and fat32 is the Windows file system.
--package.sd_file Where <arg> specifies an ELF or other data file to package into the sd_card directory/image. This option can be used repeatedly to specify multiple files to add to the sd_card directory.
--package.defer_aie_run Load the AI Engine application with the ELF file, but wait to run it until graph run directs it. This is required in the PS based AI Engine flow.
Inputs Sources Description
$(PLATFORM_REPO_PATHS)/sw/versal/xrt The PS host application needs the XRT headers in this folder to execute.
$(PLATFORM_REPO_PATHS)/sw/versal/xilinx-versal/rootfs.ext4 The root filesystem file for PetaLinux.
$(PLATFORM_REPO_PATHS)/sw/versal/xilinx-versal/Image The pre-built PetaLinux image that the processor boots from.
$(BUILD_TARGET_DIR)/fft_2d_aie_xrt.elf The PS host application executable created in the make application step.
$(BUILD_TARGET_DIR)/vck190_aie_fft_2d.hw_emu.xsa The XSA file created in the make xsa step.
$(BUILD_TARGET_DIR)/libadf.a The compiled AI Engine design graph created in the make graph step.

The output of the Vitis compiler package step is the package directory that contains the contents to run hardware emulation.

Output Objects Description
$(BUILD_TARGET_DIR)/package The hardware emulation package that contains the boot file, hardware emulation launch script, PLM and PMC boot files, PMC and QEMU command argument specification files, and Vivado simulation folder.
make run_emu: Running Hardware Emulation

make run_emu: Running Hardware Emulation

After packaging, everything is set to run hardware emulation. To run emulation, use the following command (default TARGET=hw_emu):

make run_emu 

or

###########################################################################
Hardware Emulation Goto:
$(BUILD_TARGET_DIR)/package

and do:
./launch_hw_emu.sh or ./launch_hw_emu.sh -g (for waveform viewer)...

When hardware emulation is launched, you will see the QEMU simulator load. Wait for the autoboot countdown to go to zero. After a few minutes, the root Linux prompt comes up:

After the root prompt comes up, run the following commands to run the design:

mount /dev/mmcblk0p1 /mnt
cd /mnt
./fft_2d_aie_xrt.elf a.xclbin

The fft_2d_aie_xrt.elf executes. After a few minutes, you should see the output with TEST PASSED on the console. When this is shown, run the following keyboard command to exit the QEMU instance:

#To exit QEMU Simulation
Press CtrlA, let go of the keyboard, and then press x 

To run with waveform, do the following:

cd $(BUILD_TARGET_DIR)/package
./launch_hw_emu.sh -g

The XSIM Waveform Viewer is launched. Drag and drop the signals into the viewer and click Play to start the emulation. Go back to the terminal and wait for the Linux prompt to show up. In the XSIM Waveform Viewer, you will see the signals you added to the waveform adjusting over the execution of the design. When this is done, hit the pause button and close the window to end the emulation.

The following figure shows a waveform view of the 32x64 - 1x design.

Image of 2D-FFT AIE HW_EMU Run Waveform View For 32x64-1x Design

TARGET=hw: Running on Hardware

Running on Hardware

To run the design in hardware, rerun the following make steps with TARGET=hw and other applicable options (see the preceding make steps specified above).

make kernels TARGET=hw
make xsa TARGET=hw 
make package TARGET=hw 

These commands create a $(BUILD_TARGET_DIR) folder with the kernels, XSA, and package for a hardware run.

Run the following step to set up the execution file, generated images, and base images ($(BUILD_TARGET_DIR)/package/sd_card and $(BUILD_TARGET_DIR)/package/sd_card.img).

make run_emu TARGET=hw 

These commands create a build/hw folder with the kernels, XSA, and package for a hardware run. Follow steps 1-9 to run the fft_2d_aie_xrt.elf executable on your VCK190 board.

Step 1. Ensure your board is powered off.

Step 2. Use an SD card writer (such as balenaEtcher) to flash the sd_card.img file to an SD card.

Step 3. Plug the flashed SD card into the top slot of the VCK190 board.

Step 4. Set the switch (SW1 Mode\[3:0\]=1110 = OFF OFF OFF ON).

Step 5. Connect your computer to the VCK190 board using the USB cable included with the board.

Step 6. Open a TeraTerm terminal and select the correct COM port. Set the port settings to the following:

Port: <COMMXX>
Speed: 115200
Data: 8 bit
Parity: none
Stop Bits: 1 bit
Flow control: none
Transmit delay: 0 msec/char 0 msec/line

Step 7. Power on the board.

Step 8. Wait until you see the [email protected] Linux command prompt. Press Enter a few times to get past any xinit errors.

Step 9. Run the following commands in the TeraTerm terminal:

cd /mnt/sd-mmcblk0p1
./init.sh
./fft_2d_aie_xrt.elf a.xclbin

Hardware Design Details

2D-FFT AI Engine Implementation Architecture and AI Engine/PL Function Partitioning

2D-FFT AI Engine Implementation Architecture and AI Engine/PL Function Partitioning

The following figure shows a high-level block diagram of the design. The test harness consists of the AI Engine and data mover HLS kernels (dma_hls). In this setup, there is an AXI4-Stream interface between the data mover kernels and AI Engines, with a data width of 128 bits. The data mover kernels and the AI Engine array interface are running at 250 MHz.

The data mover is a PL-based data generator and checker. It generates impulse input and checks the output of the row-wise FFT core for its response. It then generates the transposed pattern of the row-wise FFT output and feeds that to the col-wise FFT core and checks its output.

Image of 2D-FFT AIE Implementation Architecture

Design Details

Design Details

The design in this tutorial starts with a base platform containing the control interface and processing system (CIPS), NoC, AI Engine, and the interfaces among them. The Vitis compiler linker step builds on top of the base platform by adding the AI Engine graphs and PL kernels. To add the various functions in a system-level design, PL kernels are added to the base platform depending on the application (that is, the PL kernels present in each design might vary). An ADF graph is connected to an extensible Vitis platform where the graph I/Os are connected either to the platform ports or to ports on Vitis kernels through the Vitis compiler connectivity directives. In the design, the components are added by the Vitis compiler -l step (see make XSA) and include the following:

  • libadf.a
  • Data mover kernel (dma_hls.[hw|hw_emu].xo)
  • Connection interfaces defined in the system configuration file

To see a schematic view of the design with the extended platform as shown in the following figure, open the following in Vivado:

`build/fft2d_$(MAT_ROWS)x$(MAT_COLS)/x$(FFT_2D_INSTS)/[hw|hw_emu]/_x/link/vivado/vpl/prj/prj.xpr`

Image of 2D-FFT AIE 1x Vivado BD

In this design, the 2D FFT computation happens in two stages: the first compute is across the row vectors and the second stage is performed across the column vectors.The input data is accessed linearly and streamed to the AI Engines which perform MAT_COLS( default 2048 ) point FFT. The data coming out of the AI Engines is streamed to a PL kernel where it is checked against the expected pattern (the first row should be 1 and the remaining should be 0). If there is a mismatch, it is recorded in the variable stage0_errCnt. The transposed pattern of the output of the row vectors is then linearly streamed into another AI Engine which performs MAT_ROWS( default 1024 ) point FFT. The output is streamed into a data mover kernel again and is checked against the expected pattern (all values should be 1). If there is a mismatch, it is stored in the variable stage1_errCnt. Finally, the sum of stage0_errCnt and stage1_errCnt is returned from the kernel, which is read in the host app to determine whether the test has passed or failed.

The system debugging and profiling IP (DPA) is added to the PL region of the device to capture AI Engine runtime trace data if the EN_TRACE option is enabled in the design. The dma_hls kernel and the AI Engine array interface are both operating at 250 MHz. Unlike the HLS/DSP implementation, there is no clock domain crossing in the PL region in this design.

AI Engine and PL Kernels

AI Engine and PL Kernels

The top-level AI Engine graph, graph.cpp, contains two sub-graphs: FFTrows_graph and FFTcols_graph. Each sub-graph contains the individual AI Engine kernel, *FFTrow_gr.getKernels(), and *FFTcol_gr.getKernels(), which performs MAT_COLS and MAT_ROWS point FFT respectively.

dma_hls

The PL-based data movers consist of the dma_hls kernel, which generates impulse input and checks the output of each FFT stage for the expected pattern.

  • It internally comprises four loops (mm2s0, s2mm0, mm2s1, and s2mm1), with s2mm0 - mm2s1 sequenced one after the other and wrapped into the dmaHls_rowsToCols function. mm2s0, dmaHls_rowsToCols, and s2mm1 are concurrently scheduled.
  • The data width is 128 bits at both the AXI4-stream I/O sides, running at 250 MHz.

Software Design Details

The software design in the AI Engine 2D-FFT tutorial consists of the following sections:

Methodology

Methodology

The following figure elaborates on the AI Engine implementation methodology.

Image of 2D-FFT AIE Implementation Methodology

AI Engine

Independent Cores

Both AI Engine graphs for FFTrows_graph and FFTcols_graph are to be configured to be independent, with runtime ratios set to >= 0.6 so that each can be run independently of the other.

...
runtime<ratio>(*FFTrow_gr.getKernels()) = 0.6;
...
runtime<ratio>(*FFTcol_gr.getKernels()) = 0.6;
...
Window Streaming Buffer Config

The FFTrows_graph graph performs MAT_COLS point FFT and runs for MAT_ROWS number of iterations. For the FFTcols_graph graph, increase the TP_WINDOW_VSIZE to MAT_COLS instead of MAT_ROWS and it does MAT_ROWS point FFT, but runs for MAT_ROWS number of iterations instead of MAT_COLS. This reduces the ping-pong overhead which improves the overall throughput.

Large windows may result in mapper errors due to excessive memory usage. The increased TP_WINDOW_VSIZE reduces ping-pong overhead, but increases the utilization of AIE cores and thereby the power consumption. In this design due to rows to cols ratio being 1:2 the TP_WINDOW_VSIZE of both graphs are also in the same ratio. Which gives an additional increase in throughput with minimal increase in utilization.

...
// TP_WINDOW_VSIZE for FFTrows_graph...
#define FFT_ROW_TP_WINDOW_VSIZE MAT_COLS

// TP_WINDOW_VSIZE for FFTcols_graph
// Increasing the "TP__WINDOW _VSIZE" so that the ping-pong overhead is less
// Assigning it as MAT_COLS instead of MAT_ROWS...
#define FFT_COL_TP_WINDOW_VSIZE MAT_COLS

////////////////////////////////////////////////////////
// FFT_2D Datatype related Macros
// Datatype can be:
// cint16 (Default) or cfloat...
// 0=cint16(Default)
// 1=cfloat
#if FFT_2D_DT == 0

   // Input data type...
   #define FFT_2D_TT_DATA cint16
   // Twiddle Factor data type...
   #define FFT_2D_TT_TWIDDLE cint16
   
   // FFTrows_graph I/O WINDOW BUFF SIZE IN BYTES...
   #define FFT_ROW_WINDOW_BUFF_SIZE (FFT_ROW_TP_WINDOW_VSIZE * 4)
   // FFTcols_graph I/O WINDOW BUFF SIZE IN BYTES...
   #define FFT_COL_WINDOW_BUFF_SIZE (FFT_COL_TP_WINDOW_VSIZE * 4)
   
#elif FFT_2D_DT == 1

   // Input data type...
   #define FFT_2D_TT_DATA cfloat
   // Twiddle Factor data type...
   #define FFT_2D_TT_TWIDDLE cfloat
   
   // FFTrows_graph I/O WINDOW BUFF SIZE IN BYTES...
   #define FFT_ROW_WINDOW_BUFF_SIZE (FFT_ROW_TP_WINDOW_VSIZE * 8)
   // FFTcols_graph I/O WINDOW BUFF SIZE IN BYTES...
   #define FFT_COL_WINDOW_BUFF_SIZE (FFT_COL_TP_WINDOW_VSIZE * 8)
   
#endif
...

Data Mover

Data Generation/Checking and Sequencing

The data mover comprises four loops: mm2s0, s2mm0, mm2s1, and s2mm1. The s2mm0 and mm2s1 functions are wrapped into a single function, dmaHls_rowsToCols. Within that the execution sequence, s2mm0 is followed by mm2s1. The s2mm0 and s2mm1 functions check the output of the row-wise and col-wise FFT respectively against the expected golden output.

Concurrent Scheduling

Concurrent scheduling is required so that each function runs independently and the execution of one function is not blocking the other. The concurrent scheduling of the three functions mm2s0, dmaHls_rowsToCols, and s2mm1 is achieved using #pragma HLS DATAFLOW as shown in the following example.

#pragma HLS DATAFLOW
...
LOOP_ITER_MM2S0:for(int i = 0; i < iterCnt; ++i)
{
   #pragma HLS loop_tripcount min=1 max=8
   
   mm2s0(strmOut_to_rowiseFFT, matSz);
}

LOOP_ITER_S2MM0_TO_MM2S1:for(int i = 0; i < iterCnt; ++i)
{
   #pragma HLS loop_tripcount min=1 max=8
   
   dmaHls_rowsToCols(strmInp_from_rowiseFFT, strmOut_to_colwiseFFT, \
                     matSz, rows, cols, stg0_errCnt, goldenVal);
}

LOOP_ITER_S2MM1:for(int i = 0; i < iterCnt; ++i)
{
   #pragma HLS loop_tripcount min=1 max=8
   
   s2mm1(strmInp_from_colwiseFFT, matSz, stg1_errCnt, goldenVal);
}
...
Vitis HLS Scheduling and Dataflow View

The following figure shows the data mover scheduler view.

Image of Datamover Scheduler View

The following figure shows the data mover dataflow view.

Image of Datamover Dataflow View

Streaming Interface Data Width

The streaming interface data width is kept at 128 bits to reduce read/write overhead while processing data.

Frequency Selection

AI Engine kernels are configured for cint16 / 4bytes and the streaming interface is at 128bit / 16bytes. The frequency of the AI Engine array is 1000 MHz and the data mover is kept at 250 MHz, maintaining a 1:4 ratio.

AI Engine Kernels and Graph Representation

AI Engine Kernels and Graph Representation

An AI Engine kernel is a C/C++ program written using specialized intrinsic calls that target the VLIW vector processor. The AI Engine compiler compiles the kernel code to produce an executable ELF file for each of the AI Engines being used in the design. Review the AI Engine Kernel Programming section in the AI Engine documentation for a high-level overview of kernel programming. These kernels can be stitched together to function as AI Engine graphs written in C++. In this design, the AI Engine compiler writes a summary of compilation results. You can view the graph by running the following command:

vitis_analyzer $(BUILD_TARGET_DIR)/Work/graph.aiecompile_summary

The following figures show the graph representation of the AI Engine kernels (default FFT 2048 point and FFT 1024 point, FFT_2D_INSTS=1). In addition to the compute units, there are also the twiddle factor LUTs (fft_lut_tw*) and temporary buffers for FFT stages (fft_2048/1024_tmp*).

Image of 2D-FFT AI Engine 2K point Graph Image of 2D-FFT AI Engine 1K point Graph

Adaptive Data Flow (ADF) Graph

Adaptive Data Flow (ADF) Graph

This section describes the overall data flow graph specification of the 2D-FFT design using AI Engine which is compiled by the AI Engine compiler.

The overall graph definition of the design is contained in the graph.cpp file. The top-level graph contains two sub-graphs, FFTrows_graph and FFTcols_graph, each with a FFT_2D_INSTS number of objects. The following describes the definition of the sub-graphs (the FFTrows_graph is used as illustration).

Defining the Graph Class

Define the graph classes by using the objects defined in the appropriate name space. It must include the ADF library and Vitis DSP Library for FFIT. A general specification is put in for the ADF namespace:

// FFTrows_graph FFT point size...
#define FFT_ROW_TP_POINT_SIZE MAT_COLS
// FFTcols_graph FFT point size...
#define FFT_COL_TP_POINT_SIZE MAT_ROWS

// 1 (FFT) or 0 (IFFT)...
#define FFT_2D_TP_FFT_NIFFT 1
// 0 Bit Shift before output, will have to change based on input...
#define FFT_2D_TP_SHIFT 0
// FFT divided over 1 FFT Kernel...
#define FFT_2D_TP_CASC_LEN 1
// Dynamic FFT Point Size is disabled...
#define FFT_2D_TP_DYN_PT_SIZE 0

// TP_WINDOW_VSIZE for FFTrows_graph...
#define FFT_ROW_TP_WINDOW_VSIZE MAT_COLS

// TP_WINDOW_VSIZE for FFTcols_graph
// Increasing the "TP__WINDOW _VSIZE" so that the ping-pong overhead is less
// Assigning it as MAT_COLS instead of MAT_ROWS...
#define FFT_COL_TP_WINDOW_VSIZE MAT_COLS

////////////////////////////////////////////////////////
// FFT_2D Datatype related Macros
// Datatype can be:
// cint16 (Default) or cfloat...
// 0=cint16(Default)
// 1=cfloat
#if FFT_2D_DT == 0

   // Input data type...
   #define FFT_2D_TT_DATA cint16
   // Twiddle Factor data type...
   #define FFT_2D_TT_TWIDDLE cint16
   
   // FFTrows_graph I/O WINDOW BUFF SIZE IN BYTES...
   #define FFT_ROW_WINDOW_BUFF_SIZE (FFT_ROW_TP_WINDOW_VSIZE * 4)
   // FFTcols_graph I/O WINDOW BUFF SIZE IN BYTES...
   #define FFT_COL_WINDOW_BUFF_SIZE (FFT_COL_TP_WINDOW_VSIZE * 4)
   
#elif FFT_2D_DT == 1

   // Input data type...
   #define FFT_2D_TT_DATA cfloat
   // Twiddle Factor data type...
   #define FFT_2D_TT_TWIDDLE cfloat
   
   // FFTrows_graph I/O WINDOW BUFF SIZE IN BYTES...
   #define FFT_ROW_WINDOW_BUFF_SIZE (FFT_ROW_TP_WINDOW_VSIZE * 8)
   // FFTcols_graph I/O WINDOW BUFF SIZE IN BYTES...
   #define FFT_COL_WINDOW_BUFF_SIZE (FFT_COL_TP_WINDOW_VSIZE * 8)
   
#endif

#include "adf.h"
#include "fft_ifft_dit_1ch_graph.hpp"

using namespace adf;
namespace dsplib = xf::dsp::aie;

All user graphs are defined from the class graph: for example, in the FFTrows_graph design:

class FFTrows_graph: public graph
{
   public:
   	port<input>   in;
   	port<output> out;
      
   	// Constructor - with Rowise FFT graph class initialization...
   	FFTrows_graph()
      {
         dsplib::fft::dit_1ch::fft_ifft_dit_1ch_graph<FFT_2D_TT_DATA, FFT_2D_TT_TWIDDLE, FFT_ROW_TP_POINT_SIZE,
         FFT_2D_TP_FFT_NIFFT, FFT_2D_TP_SHIFT, FFT_2D_TP_CASC_LEN, FFT_2D_TP_DYN_PT_SIZE, FFT_ROW_TP_WINDOW_VSIZE> FFTrow_gr;
         
         runtime<ratio>(*FFTrow_gr.getKernels()) = 0.6;
         
         connect< window<FFT_ROW_WINDOW_BUFF_SIZE> > (in,   FFTrow_gr.in[0]);
         connect< window<FFT_ROW_WINDOW_BUFF_SIZE> > (FFTrow_gr.out[0], out);
   	}
};

Top-Level Application

Define a top-level application file (graph.cpp in this design) that contains an instance of the graph class and connect the graph to a simulation platform to provide file input and output (in the case of FFT2D_INSTS = 1 to the two sub-graphs):

#include "graph.h"

uint8_t fftCols_grInsts = 0, fftRows_grInsts = 0;

FFT2D_graph fft2d_graph;

The main function is called under the guard bounds of \_\_AIESIM\_\_ as shown below, to avoid conflict with the main function in the host application:

#ifdef __AIESIM__

   int main(int argc, char ** argv)
   {
      fft2d_graph.init();

      fft2d_graph.run(ITER_CNT * MAT_ROWS);

      fft2d_graph.end();
      
      return 0;
   }

#endif
PL Data Mover Kernel

PL Data Mover Kernel

In addition to the kernels operating in the AI Engine array, this design specifies a data mover kernel to run in the PL region of the device (written in HLS C++). The data mover kernel is brought into the design during the Vitis kernel compilation, which is further replicated based on the FFT_2D_INSTS value. The software design of the data mover kernel is described in the following sections.

dma_hls (dma_hls.cpp)

The dma_hls kernel reads data from a memory mapped AXI4 (MM-AXI4) interface and writes it to an AXI4-Stream interface.

Top Function Declaration

The dma_hls kernel takes the following arguments:

int dma_hls(
      hls::stream<qdma_axis<128, 0, 0, 0>> &strmOut_to_rowiseFFT,
      hls::stream<qdma_axis<128, 0, 0, 0>> &strmInp_from_rowiseFFT,
      hls::stream<qdma_axis<128, 0, 0, 0>> &strmOut_to_colwiseFFT,
      hls::stream<qdma_axis<128, 0, 0, 0>> &strmInp_from_colwiseFFT,
      int matSz, int rows, int cols, int iterCnt
     );
  • ap_int<N> is an arbitrary precision integer data type defined in ap_int.h where N is a bit size from 1-1024. In this design, the bit size is set to 128.
  • hls::stream<qdma_axis<D,0,0,0>> is a data type defined in ap_axi_sdata.h. It is a special data class used for data transfer when using a streaming platform. The parameter <D> is the data width of the streaming interface, which is set to 128. The remaining three parameters should be set to 0.
Top Function Definition

Use the dataflow pragma for concurrently scheduling the three functions mm2s0, dmaHls_rowsToCols, and s2mm1.

int dma_hls(
      hls::stream<qdma_axis<128, 0, 0, 0>> &strmOut_to_rowiseFFT,
      hls::stream<qdma_axis<128, 0, 0, 0>> &strmInp_from_rowiseFFT,
      hls::stream<qdma_axis<128, 0, 0, 0>> &strmOut_to_colwiseFFT,
      hls::stream<qdma_axis<128, 0, 0, 0>> &strmInp_from_colwiseFFT,
      int matSz, int rows, int cols, int iterCnt
     )
{
   #pragma HLS INTERFACE axis port=strmOut_to_rowiseFFT
   #pragma HLS INTERFACE axis port=strmInp_from_rowiseFFT
   #pragma HLS INTERFACE axis port=strmOut_to_colwiseFFT
   #pragma HLS INTERFACE axis port=strmInp_from_colwiseFFT
   
   #pragma HLS INTERFACE s_axilite port=matSz bundle=control
   #pragma HLS INTERFACE s_axilite port=rows bundle=control
   #pragma HLS INTERFACE s_axilite port=cols bundle=control
   #pragma HLS INTERFACE s_axilite port=iterCnt bundle=control
   #pragma HLS INTERFACE s_axilite port=return bundle=control  
   
   #pragma HLS DATAFLOW
   
   int stg0_errCnt = 0, stg1_errCnt = 0;
   
   ap_uint<128> goldenVal;

   goldenVal.range(127, 64) = 0x0000000100000001;
   goldenVal.range( 63,  0) = 0x0000000100000001;
   

   LOOP_ITER_MM2S0:for(int i = 0; i < iterCnt; ++i)
   {
      #pragma HLS loop_tripcount min=1 max=8
      
      mm2s0(strmOut_to_rowiseFFT, matSz);
   }
   
   LOOP_ITER_S2MM0_TO_MM2S1:for(int i = 0; i < iterCnt; ++i)
   {
      #pragma HLS loop_tripcount min=1 max=8
      
      dmaHls_rowsToCols(strmInp_from_rowiseFFT, strmOut_to_colwiseFFT, \
                        matSz, rows, cols, stg0_errCnt, goldenVal);
   }
   
   LOOP_ITER_S2MM1:for(int i = 0; i < iterCnt; ++i)
   {
      #pragma HLS loop_tripcount min=1 max=8
      
      s2mm1(strmInp_from_colwiseFFT, matSz, stg1_errCnt, goldenVal);
   }

   return (stg0_errCnt + stg1_errCnt);
}

The dma_hls kernel also specifies HLS pragmas to help optimize the kernel code and adhere to interface protocols. See this page for detailed documentation of all HLS pragmas. A summary of the HLS pragmas used in the kernel is provided in the following table.

Switch Description
#pragma HLS INTERFACE In C/C++ code, all input and output operations are performed, in zero time, through formal function arguments. In a RTL design, these same input and output operations must be performed through a port in the design interface and typically operate using a specific input/output (I/O) protocol. For more information, see this page.
#pragma HLS PIPELINE II=1 Reduces the initiation interval (II) for a function or loop by allowing the concurrent execution of operations. The default type of pipeline is defined by the config_compile -pipeline_style command, but can be overridden in the PIPELINE pragma or directive. For more information, see this page.
#pragma HLS dataflow The DATAFLOW pragma enables task-level pipelining, allowing functions and loops to overlap in their operation, increasing the concurrency of the RTL implementation and increasing the overall throughput of the design. See this page for more information.
#pragma HLS loop_tripcount When manually applied to a loop, specifies the total number of iterations performed by a loop. The LOOP_TRIPCOUNT pragma or directive is for analysis only, and does not impact the results of synthesis. See this page for more information.
PS Host Application

PS Host Application

The 2D-FFT AI Engine tutorial uses the embedded processing system (PS) as an external controller to control the AI Engine graph and data mover PL kernels. Review the Programming the PS Host Application section in the AI Engine documentation to understand the process to create a host application.

In addition to the PS host application (fft_2d_aie_app.cpp), the AI Engine control code must also be compiled. This control code (aie_control_xrt.cpp) is generated by the AI Engine compiler when compiling the AI Engine design graph and kernel code. The AI Engine control code is used by the PS host application for the following purposes:

  • Controlling the initial loading of the AI Engine kernels.
  • Running the graph for several iterations, updating the runtime parameters associated with the graph, exiting, and resetting the AI Engine tiles.

The steps to run the A72 application are as follows:

  1. Include graph.cpp and other required headers. Define the required macros. The graph.cpp AI Engine application file contains the instantiation of the AI Engine 2D-FFT data flow graph object.

    #include "graph.cpp"
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <stdint.h>
    #include <fstream>
    #include <iostream>
    #include <string>
    
    #include "adf/adf_api/XRTConfig.h"
    
    #include "experimental/xrt_aie.h"
    #include "experimental/xrt_kernel.h"
    #include "experimental/xrt_bo.h"
    
    #define MAT_SIZE (MAT_ROWS * MAT_COLS)
    
    /////////////////////////////////////////////////
    // Due to 128bit Data Transfer all dimensions,
    // to be given as by 4 for cint16
    // since 4 samples of cint16 are passed 
    /////////////////////////////////////////////////
    #if FFT_2D_DT == 0
       #define MAT_SIZE_128b (MAT_SIZE / 4)
       #define MAT_ROWS_128b (MAT_ROWS / 4)
       #define MAT_COLS_128b (MAT_COLS / 4)
    /////////////////////////////////////////////////
    // Due to 128bit Data Transfer all dimensions,
    // to be given as by 2 for cfloat
    // since 2 samples of cfloat are passed 
    /////////////////////////////////////////////////
    
    #elif FFT_2D_DT == 1
       #define MAT_SIZE_128b (MAT_SIZE / 2)
       #define MAT_ROWS_128b (MAT_ROWS / 2)
       #define MAT_COLS_128b (MAT_COLS / 2)
    
    #endif
    
  2. Check the command line argument. The beginning of the A72 application is represented by the main function. It takes in one command line argument: an XCLBIN file.

int main(int argc, char** argv)
  1. Open the XCLBIN and create data mover kernel handles. The A72 application loads the XCLBIN binary file and creates the data mover kernels to be executed on the device. The steps are:

    • Open the device and load the XCLBIN:
    auto dhdl = xrtDeviceOpen(0);
    auto xclbin = load_xclbin(dhdl, xclbinFilename);
    auto top = reinterpret_cast<const axlf*>(xclbin.data());
    
    • Open the data mover kernel and obtain handles to start the HLS PL kernels (see the following example for the dma_hls PL kernel):
    xrtKernelHandle dma_hls_khdl;
    xrtRunHandle dma_hls_rhdl;
    
    // Open kernel handle exclusively to read the ap_return register later for reporting error...
    dma_hls_khdl = xrtPLKernelOpenExclusive(dhdl, top->m_header.uuid, dma_hls_obj);
    dma_hls_rhdl = xrtRunOpen(dma_hls_khdl);
    
  2. Open the graph, obtain the handle, and execute the graph:

    • The A72 processor opens and obtains its handle using the xrtGraphOpen function.
    • The A72 processor resets the graph using the xrtGraphReset function and runs the graph execution using the xrtGraphRun function for both the 2K point and 1K point sub-graphs.
  3. Execute the data mover kernels and generate the output results:

    • Set the dma_hls kernel arguments using the xrtRunSetArg function.
    • Start the dma_hls kernels using the xrtRunStart function.
    • Wait for dma_hls execution to finish using the xrtRunWait runction.
  4. Verify the output results by reading the ap_return in $(BUILD_TARGET_DIR)/_x/dma_hls.$(TARGET)/dma_hls/dma_hls/ip/drivers/dma_hls_v1_0/src/xdma_hls_hw.h using the xrtKernelRegister API, as shown below:

    void golden_check(uint32_t *errCnt)
    {
       //////////////////////////////////////////
       // Compare results
       //////////////////////////////////////////
       
       // Reading the error count for the ap_return reg of the hls kernel...
       xrtKernelReadRegister(dma_hls_khdl, 0x10, &instance_errCnt);
       std::cout << "fft_2d_" << instsNo << " " << (instance_errCnt ? "Failed!..." : "Passed!...") << "\n" << std::endl;
       
       // Adding instance error to the total error count...
       *errCnt += instance_errCnt;
    }
    
  5. Release allocated resources. After post-processing the data, release the allocated objects and handles using the xrtRunClose, xrtKernelClose, xrtGraphClose, and xrtDeviceClose functions.

Performance Details

For all applications, designers must work to predefined specifications and build a system for their specific deployment by meeting their system requirements with respect to their available resources, latency, throughput, performance, and power. In this section, it is outlined how to measure those characteristics for the AI Engine implementation in this tutorial.

Resource Utilization and Power

Resource Utilization and Power

Resource utilization and power are measured using Vivado, vcdanalyze, and Xilinx Power Estimator (XPE) for Versal (2021.1 version) tools.

The registers and CLB LUT utilization information can be found in the Vivado project if you perform the following steps:

  1. Open the Vivado project: $(BUILD_TARGET_DIR)/_x/link/vivado/vpl/prj/prj.xpr.

  2. Go to Open Implemented Design then click Report Utilization. In the Utilization tab shown in the following figure, select ai_engine_0 and view the Registers and CLB LUTs for the 1024 x 2048 point, 1-instance, and cint16 design:

Image of 2D-FFT AIE Utilization

** Or **

  1. Do make report_metrics TARGET=hw, (recipe expanded below), alongwith relevant options, to generate utilization_hierarchical.txt under $(BLD_REPORTS_DIR)/ directory:
report_metrics:
ifeq ($(TARGET),hw_emu)
	@echo "This build target (report-metrics) not valid when design target is hw_emu"

else
	rm -rf $(BLD_REPORTS_DIR)
	mkdir -p $(BLD_REPORTS_DIR)
	cd $(BLD_REPORTS_DIR); \
	vivado -mode batch -source $(VIVADO_METRICS_SCRIPTS_REPO)/report_metrics.tcl $(BUILD_TARGET_DIR)/_x/link/vivado/vpl/prj/prj.xpr

endif

The vcdanalyze tool is used to generate a graph.xpe file which can be input to XPE for viewing the AI Engine resource utilization and power. The steps are as follows:

  1. Run make vcd (recipe expanded below) to create the graph.xpe file under $(BUILD_TARGET_DIR)/aiesim_xpe/:
cd $(BUILD_TARGET_DIR); \
aiesimulator --pkg-dir $(WORK_DIR)/ --dump-vcd x$(FFT_2D_INSTS) 2>&1 | tee -a vcd.log
cd $(BUILD_TARGET_DIR); \
vcdanalyze --vcd x$(FFT_2D_INSTS).vcd --xpe
  1. If you do not already have it installed, download and install XPE for Versal Version 2021.1. For full documentation of XPE, see this page.

  2. Follow the steps below to load the graph.xpe into XPE to see the AI Engine power comsumption and resource utilization (step 5 and 6 in the below images) for the 1024 x 2048 point 1-instance design:

Image of 2D-FFT AIE XPE Intro Image of 2D-FFT AIE XPE Util and Power Measurement

A summary of resource utilization and power for all variations is given in the following table.

cint16 Design
Number of Instances FFT Configuration Number of Compute Cores Vector Load Number of Active Memory Banks Mem R/W Rate Active AI Engine Tiles Interconnect Load FF (Regs) CLB LUTS Dynamic Power
(in mW)
1 64 point
(32 x 64)
2 13% 28 5% 5 6% 1172 419 859
1 128 point
(64 x 128)
2 23% 28 9% 5 6% 1172 419 906
1 256 point
(128 x 256)
2 40% 28 15% 5 6% 1172 419 985
1 512 point
(256 x 512)
2 56% 30 20% 5 6% 1172 419 1063
1 2048 point
(1024 x 2048)
2 78% 42 19% 6 6% 1172 419 1190
5 64 point
(32 x 64)
10 13% 140 5% 24 7% 5860 2091 1889
5 128 point
(64 x 128)
10 23% 140 9% 24 7% 5860 2091 2124
5 256 point
(128 x 256)
10 40% 140 15% 24 7% 5860 2091 2521
5 512 point
(256 x 512)
10 56% 150 19% 24 7% 5860 2091 2899
5 2048 point
(1024 x 2048)
10 78% 210 19% 32 6% 5860 2091 3615
10 64 point
(32 x 64)
20 13% 280 5% 42 7% 11720 4157 3025
10 128 point
(64 x 128)
20 23% 280 9% 42 7% 11720 4157 3497
10 256 point
(128 x 256)
20 39% 280 15% 42 7% 11720 4157 4278
10 512 point
(256 x 512)
20 56% 300 20% 42 7% 11720 4157 5068
10 2048 point
(1024 x 2048)
20 78% 404 20% 46 7% 11720 4157 5572
cfloat Design
Number of Instances FFT Configuration Number of Compute Cores Vector Load Number of Active Memory Banks Mem R/W Rate Active AI Engine Tiles Interconnect Load FF (Regs) CLB LUTS Dynamic Power
(in mW)
1 64 point
(32 x 64)
2 36% 24 9% 5 6% 1172 413 932
1 128 point
(64 x 128)
2 55% 24 13% 5 6% 1172 413 1004
1 256 point
(128 x 256)
2 72% 24 16% 5 6% 1172 412 1067
1 512 point
(256 x 512)
2 81% 26 17% 5 6% 1172 413 1098
1 2048 point
(1024 x 2048)
2 92% 26 21% 5 6% 1172 413 1143
5 64 point
(32 x 64)
10 36% 120 9% 24 7% 5860 2072 2249
5 128 point
(64 x 128)
10 56% 120 13% 24 7% 5860 2072 2618
5 256 point
(128 x 256)
10 72% 120 16% 24 7% 5860 2072 2925
5 512 point
(256 x 512)
10 81% 130 17% 24 7% 5860 2072 3084
5 2048 point
(1024 x 2048)
10 92% 130 21% 24 7% 5860 2072 3364
10 64 point
(32 x 64)
20 36% 240 9% 42 7% 11720 4108 3767
10 128 point
(64 x 128)
20 55% 240 13% 42 7% 11720 4108 4473
10 256 point
(128 x 256)
20 72% 240 16% 41 7% 11720 4108 5075
10 512 point
(256 x 512)
20 81% 240 17% 42 7% 11720 4108 5307
10 2048 point
(1024 x 2048)
20 92% 240 21% 42 7% 11720 4108 5976
Power from XPE vs HW

cint16

Number of Instances FFT Configurations XPE Load(in A) HW Load(in A)
10 512 point (256x512) 8.143 5.554
10 2048 point (1024x2048) 9.695 7.453

cfloat

Number of Instances FFT Configurations XPE Load(in A) HW Load(in A)
10 512 point (256x512) 7.93 5.472
10 2048 point (1024x2048) 10.43 7.589
Throughput and Latency

Throughput and Latency

Throughput is measured in mega-samples transferred per second (MSPS). Latency is defined as the time between the first sample being sent by the data mover into the row-wise FFT kernel and the first sample from the col-wise FFT kernel being received by the data mover. It is measured by viewing the runtime generated trace texts using Vitis analyzer. The steps to measure throughput and latency are listed below:

  1. Compile the design using EN_TRACE=1. It automatically includes a xrt.ini file while packaging, which comprises the following:

    [Debug]
    xrt_trace=true
    data_transfer_trace=fine
    trace_buffer_size=500M
    

    Refer to the xrt.ini documentation for more information.

  2. After execution on the board, transfer the generated device_trace_0.csv, hal_host_trace.csv, and xrt.run_summary files back to your system.

  3. Open xrt.run_summary using vitis_analyzer: vitis_analyzer xrt.run_summary.

  4. The snapshot of the timeline trace for the AI Engine 1024 x 2048 point 1-instance design run with ITER_CNT=8 is shown in the following figure:

Image of 2D-FFT AI Engine implementation 1x Timeline Trace

  1. The profiling setup in the Makefile measures the execution time and all the interfaces. For higher instance designs only, strmInp_from_colwiseFFT is profiled.

The throughput and latency calculations for the 1024 x 2048 point, 1-instance and cint16 design based on the hw_emu run is as follows:

Execution Time:
   = Difference in execution timeline trace
   = (End of Execution Timestamp of Stream `strmInp_from_rowiseFFT`) -
     (Start of Execution Timestamp of Stream `strmOut_to_rowiseFFT`)
   = 4210.95us

Latency:
   = Difference between strmInp_from_colwiseFFT beginning and execution beginning
   = (Start of Execution Timestamp of Stream `strmOut_to_colwiseFFT`) -
     (Start of Execution Timestamp of Stream `strmOut_to_rowiseFFT`)
   = 4210.6us

Throughput = (Samples transferred) / execution time
           = (MAT_ROWS x MAT_COLS) / execution time
           = (1024 x 2048) / 4210.95us
           = 498 MSamples/s
           = 498 x 4 MB/s (As each sample is 4bytes)
           = 1992 MB/s

A summary of throughput and latency for all variations is shown in the following table.

cint16 Design
Number of Instances FFT Configuration Data Transfer Size Aggregate Throughput
(in MSPS)
Average Throughput
(in MSPS)
Average Latency
(in μs)
Minimum Latency
(in μs)
1 64 point
(32 x 64)
32768 306.218 306.218 6.460 6.460
1 128 point
(64 x 128)
131072 433.538 433.538 16.497 16.497
1 256 point
(128 x 256)
524288 595.334 595.334 50.372 50.372
1 512 point
(256 x 512)
2097152 695.990 695.990 184.090 184.090
1 2048 point
(1024 x 2048)
33554432 752.920 752.920 2873.847 2873.847
5 64 point
(32 x 64)
32768 1531.052 306.210 6.458 6.457
5 128 point
(64 x 128)
131072 2160.752 432.150 16.497 16.493
5 256 point
(128 x 256)
524288 2970.274 594.055 50.370 50.365
5 512 point
(256 x 512)
2097152 3476.540 695.308 184.087 184.080
5 2048 point
(1024 x 2048)
33554432 3764.339 752.868 2873.843 2873.834
10 64 point
(32 x 64)
32768 3012.241 301.224 6.460 6.455
10 128 point
(64 x 128)
131072 4335.747 433.575 16.498 16.493
10 256 point
(128 x 256)
524288 5933.444 593.344 50.370 50.365
10 512 point
(256 x 512)
2097152 6952.882 695.288 184.087 184.083
10 2048 point
(1024 x 2048)
33554432 7528.710 752.871 2873.628 2873.110
cfloat Design
Number of Instances FFT Configuration Data Transfer Size Aggregate Throughput
(in MSPS)
Average Throughput
(in MSPS)
Average Latency
(in μs)
Minimum Latency
(in μs)
1 64 point
(32 x 64)
32768 190.658 190.658 10.721 10.721
1 128 point
(64 x 128)
131072 220.009 220.009 36.802 36.802
1 256 point
(128 x 256)
524288 234.902 234.902 141.548 141.548
1 512 point
(256 x 512)
2097152 232.724 232.724 579.066 579.066
1 2048 point
(1024 x 2048)
33554432 208.438 208.438 10433.010 10433.010
5 64 point
(32 x 64)
32768 953.314 190.663 10.714 10.709
5 128 point
(64 x 128)
131072 1104.281 220.856 36.798 36.796
5 256 point
(128 x 256)
524288 1175.396 235.079 141.542 141.542
5 512 point
(256 x 512)
2097152 1163.797 232.759 579.065 579.060
5 2048 point
(1024 x 2048)
33554432 1042.202 208.440 10433.012 10432.997
10 64 point
(32 x 64)
32768 1906.628 190.663 10.714 10.709
10 128 point
(64 x 128)
131072 2208.563 220.856 36.785 36.743
10 256 point
(128 x 256)
524288 2350.760 235.076 141.541 141.530
10 512 point
(256 x 512)
2097152 2327.413 232.741 579.065 579.060
10 2048 point
(1024 x 2048)
33554432 2084.404 208.440 10433.012 10432.997
Performance per Watt

Performance per Watt

Performance per Watt is represented as throughput in MSPS/power in Watts. The following example shows the calculation for the 1024 x 2048 point, 1-instance, and cint16 design:

Performance per Watt = Throughput(MSPS) / Power(Watt)
                     = (752.920 / 1.190) MSPS/Watt
                     = 632.71 MSPS/Watt

A summary of performance per Watt for all variations is shown in the following table.

cint16 Design
Number of Instances FFT Configuration Performance per Watt (in MSPS/Watt)
1 64 point (32 x 64) 356.48
1 128 point (64 x 128) 478.52
1 256 point (128 x 256) 604.40
1 512 point (256 x 512) 654.74
1 2048 point (1024 x 2048) 632.71
5 64 point (32 x 64) 810.51
5 128 point (64 x 128) 1017.30
5 256 point (128 x 256) 1178.21
5 512 point (256 x 512) 1199.22
5 2048 point (1024 x 2048) 1041.31
10 64 point (32 x 64) 995.78
10 128 point (64 x 128) 1239.85
10 256 point (128 x 256) 1386.97
10 512 point (256 x 512) 1371.65
10 2048 point (1024 x 2048) 1351.17
cfloat Design
Number of Instances FFT Configuration Performance per Watt (in MSPS/Watt)
1 64 point (32 x 64) 204.57
1 128 point (64 x 128) 219.13
1 256 point (128 x 256) 220.15
1 512 point (256 x 512) 211.95
1 2048 point (1024 x 2048) 182.36
5 64 point (32 x 64) 423.88
5 128 point (64 x 128) 421.80
5 256 point (128 x 256) 401.84
5 512 point (256 x 512) 377.37
5 2048 point (1024 x 2048) 309.81
10 64 point (32 x 64) 506.14
10 128 point (64 x 128) 493.75
10 256 point (128 x 256) 463.20
10 512 point (256 x 512) 438.56
10 2048 point (1024 x 2048) 348.80
Consolidated Summary

Consolidated Summary

A consolidated summary of observations for all the point sizes and all the corresponding instance variations is shown in the following table.

cint16 Design
FFT Configuration - Number of Instances Aggregate Throughput
(in MSPS)
Average Latency
(in μs)
Number of Compute Cores Vector Load Number of Active Memory Banks Mem R/W Rate FF (Regs) CLB LUTs Dynamic Power
(in mW)
Performance per Watt
(in MSPS/Watt)
64 point
(32 x 64)
- x1
306.218 6.460 2 13% 28 5% 1172 419 859 356.48
128 point
(64 x 128)
- x1
433.538 16.497 2 23% 28 9% 1172 419 906 478.52
256 point
(128 x 256)
- x1
595.334 50.372 2 40% 28 15% 1172 419 985 604.40
512 point
(256 x 512)
- x1
695.990 184.090 2 56% 30 20% 1172 419 1063 654.74
2048 point
(1024 x 2048)
- x1
752.920 2873.847 2 78% 42 19% 1172 419 1190 632.71
64 point
(32 x 64)
- x5
1531.052 6.458 10 13% 140 5% 5860 2091 1889 810.51
128 point
(64 x 128)
- x5
2160.752 16.497 10 23% 140 9% 5860 2091 2124 1017.30
256 point
(128 x 256)
- x5
2970.274 50.370 10 40% 140 15% 5860 2091 2521 1178.21
512 point
(256 x 512)
- x5
3476.540 184.087 10 56% 150 19% 5860 2091 2899 1199.22
2048 point
(1024 x 2048)
- x5
3764.339 2873.843 10 78% 210 19% 5860 2091 3615 1041.31
64 point
(32 x 64)
- x10
3012.241 6.460 20 13% 280 5% 11720 4157 3025 995.78
128 point
(64 x 128)
- x10
4335.747 16.498 20 23% 280 9% 11720 4157 3497 1239.85
256 point
(128 x 256)
- x10
5933.444 50.370 20 39% 280 15% 11720 4157 4278 1386.97
512 point
(256 x 512)
- x10
6952.882 184.087 20 56% 300 20% 11720 4157 5068 1371.65
2048 point
(1024 x 2048)
- x10
7528.710 2873.628 20 78% 404 20% 11720 4157 5572 1351.17
cfloat Design
FFT Configuration - Number of Instances Aggregate Throughput
(in MSPS)
Average Latency
(in μs)
Number of Compute Cores Vector Load Number of Active Memory Banks Mem R/W Rate FF (Regs) CLB LUTs Dynamic Power
(in mW)
Performance per Watt
(in MSPS/Watt)
64 point
(32 x 64)
- x1
190.658 10.721 2 36% 24 9% 1172 413 932 204.57
128 point
(64 x 128)
- x1
220.009 36.802 2 55% 24 13% 1172 413 1004 219.13
256 point
(128 x 256)
- x1
234.902 141.548 2 72% 24 16% 1172 413 1067 220.15
512 point
(256 x 512)
- x1
232.724 579.066 2 81% 26 17% 1172 413 1098 211.95
2048 point
(1024 x 2048)
- x1
208.438 10433.010 2 92% 26 21% 1172 413 1143 182.36
64 point
(32 x 64)
- x5
953.314 10.714 10 36% 120 9% 5860 2072 2249 423.88
128 point
(64 x 128)
- x5
1104.281 36.798 10 56% 120 13% 5860 2072 2618 421.80
256 point
(128 x 256)
- x5
1175.396 141.542 10 72% 120 16% 5860 2072 2925 401.84
512 point
(256 x 512)
- x5
1163.797 579.065 10 81% 130 17% 5860 2072 3084 377.37
2048 point
(1024 x 2048)
- x5
1042.202 10433.012 10 92% 130 21% 5860 2072 3364 309.81
64 point
(32 x 64)
- x10
1906.628 10.714 20 36% 240 9% 11720 4108 3767 506.14
128 point
(64 x 128)
- x10
2208.563 36.785 20 55% 240 13% 11720 4108 4473 493.75
256 point
(128 x 256)
- x10
2350.760 141.541 20 72% 240 16% 11720 4108 5075 463.20
512 point
(256 x 512)
- x10
2327.413 579.065 20 81% 240 17% 11720 4108 5307 438.56
2048 point
(1024 x 2048)
- x10
2084.404 10433.012 20 92% 240 21% 11720 4108 5976 348.80

From these observations it can be seen that with the increase in the FFT point size, the window buffer size used in the AI Engines increases, and with that the throughput increases as well. By increasing the TP_WINDOW_VSIZE parameter in the FFT AI Engine graph, the throughput can be further increased, especially for the lower point sizes, but the AI Engine mapper/router could encounter issues due to the higher memory requirement.

Furthermore, the FFT point sizes increase, the power does not increase proportionately, so the performance per Watt maintains an increasing trend in the beginning and saturates towards the end.

Support

GitHub issues will be used for tracking requests and bugs. For questions go to forums.xilinx.com.

License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

XD073 | © Copyright 2022 Xilinx, Inc.