forked from sausheong/gonn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp.go
255 lines (225 loc) · 5.83 KB
/
mlp.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
package main
import (
"fmt"
"image"
"image/png"
"math"
"os"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/stat/distuv"
)
// Network is a neural network with 3 layers
type Network struct {
inputs int
hiddens int
outputs int
hiddenWeights *mat.Dense
outputWeights *mat.Dense
learningRate float64
}
// CreateNetwork creates a neural network with random weights
func CreateNetwork(input, hidden, output int, rate float64) (net Network) {
net = Network{
inputs: input,
hiddens: hidden,
outputs: output,
learningRate: rate,
}
net.hiddenWeights = mat.NewDense(net.hiddens, net.inputs, randomArray(net.inputs*net.hiddens, float64(net.inputs)))
net.outputWeights = mat.NewDense(net.outputs, net.hiddens, randomArray(net.hiddens*net.outputs, float64(net.hiddens)))
return
}
// Train the neural network
func (net *Network) Train(inputData []float64, targetData []float64) {
// feedforward
inputs := mat.NewDense(len(inputData), 1, inputData)
hiddenInputs := dot(net.hiddenWeights, inputs)
hiddenOutputs := apply(sigmoid, hiddenInputs)
finalInputs := dot(net.outputWeights, hiddenOutputs)
finalOutputs := apply(sigmoid, finalInputs)
// find errors
targets := mat.NewDense(len(targetData), 1, targetData)
outputErrors := subtract(targets, finalOutputs)
hiddenErrors := dot(net.outputWeights.T(), outputErrors)
// backpropagate
net.outputWeights = add(net.outputWeights,
scale(net.learningRate,
dot(multiply(outputErrors, sigmoidPrime(finalOutputs)),
hiddenOutputs.T()))).(*mat.Dense)
net.hiddenWeights = add(net.hiddenWeights,
scale(net.learningRate,
dot(multiply(hiddenErrors, sigmoidPrime(hiddenOutputs)),
inputs.T()))).(*mat.Dense)
}
// Predict uses the neural network to predict the value given input data
func (net Network) Predict(inputData []float64) mat.Matrix {
// feedforward
inputs := mat.NewDense(len(inputData), 1, inputData)
hiddenInputs := dot(net.hiddenWeights, inputs)
hiddenOutputs := apply(sigmoid, hiddenInputs)
finalInputs := dot(net.outputWeights, hiddenOutputs)
finalOutputs := apply(sigmoid, finalInputs)
return finalOutputs
}
func sigmoid(r, c int, z float64) float64 {
return 1.0 / (1 + math.Exp(-1*z))
}
func sigmoidPrime(m mat.Matrix) mat.Matrix {
rows, _ := m.Dims()
o := make([]float64, rows)
for i := range o {
o[i] = 1
}
ones := mat.NewDense(rows, 1, o)
return multiply(m, subtract(ones, m)) // m * (1 - m)
}
//
// Helper functions to allow easier use of Gonum
//
func dot(m, n mat.Matrix) mat.Matrix {
r, _ := m.Dims()
_, c := n.Dims()
o := mat.NewDense(r, c, nil)
o.Product(m, n)
return o
}
func apply(fn func(i, j int, v float64) float64, m mat.Matrix) mat.Matrix {
r, c := m.Dims()
o := mat.NewDense(r, c, nil)
o.Apply(fn, m)
return o
}
func scale(s float64, m mat.Matrix) mat.Matrix {
r, c := m.Dims()
o := mat.NewDense(r, c, nil)
o.Scale(s, m)
return o
}
func multiply(m, n mat.Matrix) mat.Matrix {
r, c := m.Dims()
o := mat.NewDense(r, c, nil)
o.MulElem(m, n)
return o
}
func add(m, n mat.Matrix) mat.Matrix {
r, c := m.Dims()
o := mat.NewDense(r, c, nil)
o.Add(m, n)
return o
}
func addScalar(i float64, m mat.Matrix) mat.Matrix {
r, c := m.Dims()
a := make([]float64, r*c)
for x := 0; x < r*c; x++ {
a[x] = i
}
n := mat.NewDense(r, c, a)
return add(m, n)
}
func subtract(m, n mat.Matrix) mat.Matrix {
r, c := m.Dims()
o := mat.NewDense(r, c, nil)
o.Sub(m, n)
return o
}
// randomly generate a float64 array
func randomArray(size int, v float64) (data []float64) {
dist := distuv.Uniform{
Min: -1 / math.Sqrt(v),
Max: 1 / math.Sqrt(v),
}
data = make([]float64, size)
for i := 0; i < size; i++ {
// data[i] = rand.NormFloat64() * math.Pow(v, -0.5)
data[i] = dist.Rand()
}
return
}
func addBiasNodeTo(m mat.Matrix, b float64) mat.Matrix {
r, _ := m.Dims()
a := mat.NewDense(r+1, 1, nil)
a.Set(0, 0, b)
for i := 0; i < r; i++ {
a.Set(i+1, 0, m.At(i, 0))
}
return a
}
// pretty print a Gonum matrix
func matrixPrint(X mat.Matrix) {
fa := mat.Formatted(X, mat.Prefix(""), mat.Squeeze())
fmt.Printf("%v\n", fa)
}
func save(net Network) {
h, err := os.Create("data/hweights.model")
defer h.Close()
if err == nil {
net.hiddenWeights.MarshalBinaryTo(h)
}
o, err := os.Create("data/oweights.model")
defer o.Close()
if err == nil {
net.outputWeights.MarshalBinaryTo(o)
}
}
// load a neural network from file
func load(net *Network) {
h, err := os.Open("data/hweights.model")
defer h.Close()
if err == nil {
net.hiddenWeights.Reset()
net.hiddenWeights.UnmarshalBinaryFrom(h)
}
o, err := os.Open("data/oweights.model")
defer o.Close()
if err == nil {
net.outputWeights.Reset()
net.outputWeights.UnmarshalBinaryFrom(o)
}
return
}
// predict a number from an image
// image should be 28 x 28 PNG file
func predictFromImage(net Network, path string) int {
input := dataFromImage(path)
output := net.Predict(input)
matrixPrint(output)
best := 0
highest := 0.0
for i := 0; i < net.outputs; i++ {
if output.At(i, 0) > highest {
best = i
highest = output.At(i, 0)
}
}
return best
}
// get the pixel data from an image
func dataFromImage(filePath string) (pixels []float64) {
// read the file
imgFile, err := os.Open(filePath)
defer imgFile.Close()
if err != nil {
fmt.Println("Cannot read file:", err)
}
img, err := png.Decode(imgFile)
if err != nil {
fmt.Println("Cannot decode file:", err)
}
// create a grayscale image
bounds := img.Bounds()
gray := image.NewGray(bounds)
for x := 0; x < bounds.Max.X; x++ {
for y := 0; y < bounds.Max.Y; y++ {
var rgba = img.At(x, y)
gray.Set(x, y, rgba)
}
}
// make a pixel array
pixels = make([]float64, len(gray.Pix))
// populate the pixel array subtract Pix from 255 because that's how
// the MNIST database was trained (in reverse)
for i := 0; i < len(gray.Pix); i++ {
pixels[i] = (float64(255-gray.Pix[i]) / 255.0 * 0.999) + 0.001
}
return
}