-
Notifications
You must be signed in to change notification settings - Fork 1
/
AE.py
64 lines (49 loc) · 1.93 KB
/
AE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from torch import nn
from torch.nn import Linear
class AE_encoder(nn.Module):
def __init__(self, ae_n_enc_1, ae_n_enc_2, ae_n_enc_3, n_input, n_z):
super(AE_encoder, self).__init__()
self.enc_1 = Linear(n_input, ae_n_enc_1)
self.enc_2 = Linear(ae_n_enc_1, ae_n_enc_2)
self.enc_3 = Linear(ae_n_enc_2, ae_n_enc_3)
self.z_layer = Linear(ae_n_enc_3, n_z)
self.act = nn.LeakyReLU(0.2, inplace=True)
def forward(self, x):
z = self.act(self.enc_1(x))
z = self.act(self.enc_2(z))
z = self.act(self.enc_3(z))
z_ae = self.z_layer(z)
return z_ae
class AE_decoder(nn.Module):
def __init__(self, ae_n_dec_1, ae_n_dec_2, ae_n_dec_3, n_input, n_z):
super(AE_decoder, self).__init__()
self.dec_1 = Linear(n_z, ae_n_dec_1)
self.dec_2 = Linear(ae_n_dec_1, ae_n_dec_2)
self.dec_3 = Linear(ae_n_dec_2, ae_n_dec_3)
self.x_bar_layer = Linear(ae_n_dec_3, n_input)
self.act = nn.LeakyReLU(0.2, inplace=True)
def forward(self, z_ae):
z = self.act(self.dec_1(z_ae))
z = self.act(self.dec_2(z))
z = self.act(self.dec_3(z))
x_hat = self.x_bar_layer(z)
return x_hat
class AE(nn.Module):
def __init__(self, ae_n_enc_1, ae_n_enc_2, ae_n_enc_3, ae_n_dec_1, ae_n_dec_2, ae_n_dec_3, n_input, n_z):
super(AE, self).__init__()
self.encoder = AE_encoder(
ae_n_enc_1=ae_n_enc_1,
ae_n_enc_2=ae_n_enc_2,
ae_n_enc_3=ae_n_enc_3,
n_input=n_input,
n_z=n_z)
self.decoder = AE_decoder(
ae_n_dec_1=ae_n_dec_1,
ae_n_dec_2=ae_n_dec_2,
ae_n_dec_3=ae_n_dec_3,
n_input=n_input,
n_z=n_z)
def forward(self, x):
z_ae = self.encoder(x)
x_hat = self.decoder(z_ae)
return x_hat, z_ae