-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
100 lines (81 loc) · 2.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
import random
import numpy as np
from munkres import Munkres
from sklearn import metrics
from sklearn.metrics import adjusted_rand_score as ari_score
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
def adjust_learning_rate(optimizer, epoch):
lr = 0.001 * (0.1 ** (epoch // 50))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def cluster_acc(y_true, y_pred):
y_true = y_true - np.min(y_true)
l1 = list(set(y_true))
numclass1 = len(l1)
l2 = list(set(y_pred))
numclass2 = len(l2)
ind = 0
if numclass1 != numclass2:
for i in l1:
if i in l2:
pass
else:
y_pred[ind] = i
ind += 1
l2 = list(set(y_pred))
numclass2 = len(l2)
if numclass1 != numclass2:
print('error')
return
cost = np.zeros((numclass1, numclass2), dtype=int)
for i, c1 in enumerate(l1):
mps = [i1 for i1, e1 in enumerate(y_true) if e1 == c1]
for j, c2 in enumerate(l2):
mps_d = [i1 for i1 in mps if y_pred[i1] == c2]
cost[i][j] = len(mps_d)
m = Munkres()
cost = cost.__neg__().tolist()
indexes = m.compute(cost)
new_predict = np.zeros(len(y_pred))
for i, c in enumerate(l1):
c2 = l2[indexes[i][1]]
ai = [ind for ind, elm in enumerate(y_pred) if elm == c2]
new_predict[ai] = c
acc = metrics.accuracy_score(y_true, new_predict)
f1_macro = metrics.f1_score(y_true, new_predict, average='macro')
precision_macro = metrics.precision_score(y_true, new_predict, average='macro')
recall_macro = metrics.recall_score(y_true, new_predict, average='macro')
f1_micro = metrics.f1_score(y_true, new_predict, average='micro')
precision_micro = metrics.precision_score(y_true, new_predict, average='micro')
recall_micro = metrics.recall_score(y_true, new_predict, average='micro')
return acc, f1_macro
def eva(y_true, y_pred, epoch=0):
acc, f1 = cluster_acc(y_true, y_pred)
nmi = nmi_score(y_true, y_pred, average_method='arithmetic')
ari = ari_score(y_true, y_pred)
print('Epoch_{}'.format(epoch), ':acc {:.4f}'.format(acc), ', nmi {:.4f}'.format(nmi), ', ari {:.4f}'.format(ari),
', f1 {:.4f}'.format(f1))
return acc, nmi, ari, f1
def parameter(model):
params = list(model.parameters())
k = 0
for i in params:
l = 1
for j in i.size():
l *= j
k = k + l
print("sum:" + str(k))
return str(k)
def target_distribution(q):
weight = q ** 2 / q.sum(0)
return (weight.t() / weight.sum(1)).t()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True