-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
175 lines (144 loc) · 6.75 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch.nn as nn
import dgl.function as fn
import torch as th
from dgl.nn.functional import edge_softmax
class MLP(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.W = nn.Linear(in_dim, out_dim)
def apply_edges(self, edges):
h_e = edges.data['h']
h_u = edges.src['h']
h_v = edges.dst['h']
score = self.W(th.cat([h_e, h_u, h_v], -1))
return {'score': score}
def forward(self, g, e_feat, u_feat, v_feat):
with g.local_scope():
g.edges['forward'].data['h'] = e_feat
g.nodes['u'].data['h'] = u_feat
g.nodes['v'].data['h'] = v_feat
g.apply_edges(self.apply_edges, etype="forward")
return g.edges['forward'].data['score']
class GASConv(nn.Module):
"""One layer of GAS."""
def __init__(self,
e_in_dim,
u_in_dim,
v_in_dim,
e_out_dim,
u_out_dim,
v_out_dim,
activation=None,
dropout=0):
super(GASConv, self).__init__()
self.activation = activation
self.dropout = nn.Dropout(dropout)
self.e_linear = nn.Linear(e_in_dim, e_out_dim)
self.u_linear = nn.Linear(u_in_dim, e_out_dim)
self.v_linear = nn.Linear(v_in_dim, e_out_dim)
self.W_ATTN_u = nn.Linear(u_in_dim, v_in_dim + e_in_dim)
self.W_ATTN_v = nn.Linear(v_in_dim, u_in_dim + e_in_dim)
# the proportion of h_u and h_Nu are specified as 1/2 in formula 8
nu_dim = int(u_out_dim / 2)
nv_dim = int(v_out_dim / 2)
self.W_u = nn.Linear(v_in_dim + e_in_dim, nu_dim)
self.W_v = nn.Linear(u_in_dim + e_in_dim, nv_dim)
self.Vu = nn.Linear(u_in_dim, u_out_dim - nu_dim)
self.Vv = nn.Linear(v_in_dim, v_out_dim - nv_dim)
def forward(self, g, e_feat, u_feat, v_feat):
with g.local_scope():
g.nodes['u'].data['h'] = u_feat
g.nodes['v'].data['h'] = v_feat
g.edges['forward'].data['h'] = e_feat
g.edges['backward'].data['h'] = e_feat
# formula 3 and 4 (optimized implementation to save memory)
g.nodes["u"].data.update({'he_u': self.u_linear(u_feat)})
g.nodes["v"].data.update({'he_v': self.v_linear(v_feat)})
g.edges["forward"].data.update({'he_e': self.e_linear(e_feat)})
g.apply_edges(lambda edges: {'he': edges.data['he_e'] + edges.src['he_u'] + edges.dst['he_v']}, etype='forward')
he = g.edges["forward"].data['he']
if self.activation is not None:
he = self.activation(he)
# formula 6
g.apply_edges(lambda edges: {'h_ve': th.cat([edges.src['h'], edges.data['h']], -1)}, etype='backward')
g.apply_edges(lambda edges: {'h_ue': th.cat([edges.src['h'], edges.data['h']], -1)}, etype='forward')
# formula 7, self-attention
g.nodes['u'].data['h_att_u'] = self.W_ATTN_u(u_feat)
g.nodes['v'].data['h_att_v'] = self.W_ATTN_v(v_feat)
# Step 1: dot product
g.apply_edges(fn.e_dot_v('h_ve', 'h_att_u', 'edotv'), etype='backward')
g.apply_edges(fn.e_dot_v('h_ue', 'h_att_v', 'edotv'), etype='forward')
# Step 2. softmax
g.edges['backward'].data['sfm'] = edge_softmax(g['backward'], g.edges['backward'].data['edotv'])
g.edges['forward'].data['sfm'] = edge_softmax(g['forward'], g.edges['forward'].data['edotv'])
# Step 3. Broadcast softmax value to each edge, and then attention is done
g.apply_edges(lambda edges: {'attn': edges.data['h_ve'] * edges.data['sfm']}, etype='backward')
g.apply_edges(lambda edges: {'attn': edges.data['h_ue'] * edges.data['sfm']}, etype='forward')
# Step 4. Aggregate attention to dst,user nodes, so formula 7 is done
g.update_all(fn.copy_e('attn', 'm'), fn.sum('m', 'agg_u'), etype='backward')
g.update_all(fn.copy_e('attn', 'm'), fn.sum('m', 'agg_v'), etype='forward')
# formula 5
h_nu = self.W_u(g.nodes['u'].data['agg_u'])
h_nv = self.W_v(g.nodes['v'].data['agg_v'])
if self.activation is not None:
h_nu = self.activation(h_nu)
h_nv = self.activation(h_nv)
# Dropout
he = self.dropout(he)
h_nu = self.dropout(h_nu)
h_nv = self.dropout(h_nv)
# formula 8
hu = th.cat([self.Vu(u_feat), h_nu], -1)
hv = th.cat([self.Vv(v_feat), h_nv], -1)
return he, hu, hv
class GAS(nn.Module):
def __init__(self,
e_in_dim,
u_in_dim,
v_in_dim,
e_hid_dim,
u_hid_dim,
v_hid_dim,
out_dim,
num_layers=2,
dropout=0.0,
activation=None):
super(GAS, self).__init__()
self.e_in_dim = e_in_dim
self.u_in_dim = u_in_dim
self.v_in_dim = v_in_dim
self.e_hid_dim = e_hid_dim
self.u_hid_dim = u_hid_dim
self.v_hid_dim = v_hid_dim
self.out_dim = out_dim
self.num_layer = num_layers
self.dropout = dropout
self.activation = activation
self.predictor = MLP(e_hid_dim + u_hid_dim + v_hid_dim, out_dim)
self.layers = nn.ModuleList()
# Input layer
self.layers.append(GASConv(self.e_in_dim,
self.u_in_dim,
self.v_in_dim,
self.e_hid_dim,
self.u_hid_dim,
self.v_hid_dim,
activation=self.activation,
dropout=self.dropout))
# Hidden layers with n - 1 CompGraphConv layers
for i in range(self.num_layer - 1):
self.layers.append(GASConv(self.e_hid_dim,
self.u_hid_dim,
self.v_hid_dim,
self.e_hid_dim,
self.u_hid_dim,
self.v_hid_dim,
activation=self.activation,
dropout=self.dropout))
def forward(self, graph, e_feat, u_feat, v_feat):
# For full graph training, directly use the graph
# Forward of n layers of GAS
for layer in self.layers:
e_feat, u_feat, v_feat = layer(graph, e_feat, u_feat, v_feat)
# return the result of final prediction layer
return self.predictor(graph, e_feat, u_feat, v_feat)