-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
544 lines (478 loc) · 24.7 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
"""MovieLens dataset"""
import numpy as np
import os
import re
import pandas as pd
import scipy.sparse as sp
import torch as th
import dgl
from dgl.data.utils import download, extract_archive, get_download_dir
from utils import to_etype_name
_urls = {
'ml-100k' : 'http://files.grouplens.org/datasets/movielens/ml-100k.zip',
'ml-1m' : 'http://files.grouplens.org/datasets/movielens/ml-1m.zip',
'ml-10m' : 'http://files.grouplens.org/datasets/movielens/ml-10m.zip',
}
READ_DATASET_PATH = get_download_dir()
GENRES_ML_100K =\
['unknown', 'Action', 'Adventure', 'Animation',
'Children', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy',
'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi',
'Thriller', 'War', 'Western']
GENRES_ML_1M = GENRES_ML_100K[1:]
GENRES_ML_10M = GENRES_ML_100K + ['IMAX']
class MovieLens(object):
"""MovieLens dataset used by GCMC model
TODO(minjie): make this dataset more general
The dataset stores MovieLens ratings in two types of graphs. The encoder graph
contains rating value information in the form of edge types. The decoder graph
stores plain user-movie pairs in the form of a bipartite graph with no rating
information. All graphs have two types of nodes: "user" and "movie".
The training, validation and test set can be summarized as follows:
training_enc_graph : training user-movie pairs + rating info
training_dec_graph : training user-movie pairs
valid_enc_graph : training user-movie pairs + rating info
valid_dec_graph : validation user-movie pairs
test_enc_graph : training user-movie pairs + validation user-movie pairs + rating info
test_dec_graph : test user-movie pairs
Attributes
----------
train_enc_graph : dgl.DGLHeteroGraph
Encoder graph for training.
train_dec_graph : dgl.DGLHeteroGraph
Decoder graph for training.
train_labels : torch.Tensor
The categorical label of each user-movie pair
train_truths : torch.Tensor
The actual rating values of each user-movie pair
valid_enc_graph : dgl.DGLHeteroGraph
Encoder graph for validation.
valid_dec_graph : dgl.DGLHeteroGraph
Decoder graph for validation.
valid_labels : torch.Tensor
The categorical label of each user-movie pair
valid_truths : torch.Tensor
The actual rating values of each user-movie pair
test_enc_graph : dgl.DGLHeteroGraph
Encoder graph for test.
test_dec_graph : dgl.DGLHeteroGraph
Decoder graph for test.
test_labels : torch.Tensor
The categorical label of each user-movie pair
test_truths : torch.Tensor
The actual rating values of each user-movie pair
user_feature : torch.Tensor
User feature tensor. If None, representing an identity matrix.
movie_feature : torch.Tensor
Movie feature tensor. If None, representing an identity matrix.
possible_rating_values : np.ndarray
Available rating values in the dataset
Parameters
----------
name : str
Dataset name. Could be "ml-100k", "ml-1m", "ml-10m"
device : torch.device
Device context
mix_cpu_gpu : boo, optional
If true, the ``user_feature`` attribute is stored in CPU
use_one_hot_fea : bool, optional
If true, the ``user_feature`` attribute is None, representing an one-hot identity
matrix. (Default: False)
symm : bool, optional
If true, the use symmetric normalize constant. Otherwise, use left normalize
constant. (Default: True)
test_ratio : float, optional
Ratio of test data
valid_ratio : float, optional
Ratio of validation data
"""
def __init__(self, name, device, mix_cpu_gpu=False,
use_one_hot_fea=False, symm=True,
test_ratio=0.1, valid_ratio=0.1):
self._name = name
self._device = device
self._symm = symm
self._test_ratio = test_ratio
self._valid_ratio = valid_ratio
# download and extract
download_dir = get_download_dir()
zip_file_path = '{}/{}.zip'.format(download_dir, name)
download(_urls[name], path=zip_file_path)
extract_archive(zip_file_path, '{}/{}'.format(download_dir, name))
if name == 'ml-10m':
root_folder = 'ml-10M100K'
else:
root_folder = name
self._dir = os.path.join(download_dir, name, root_folder)
print("Starting processing {} ...".format(self._name))
self._load_raw_user_info()
self._load_raw_movie_info()
print('......')
if self._name == 'ml-100k':
self.all_train_rating_info = self._load_raw_rates(os.path.join(self._dir, 'u1.base'), '\t')
self.test_rating_info = self._load_raw_rates(os.path.join(self._dir, 'u1.test'), '\t')
self.all_rating_info = pd.concat([self.all_train_rating_info, self.test_rating_info])
elif self._name == 'ml-1m' or self._name == 'ml-10m':
self.all_rating_info = self._load_raw_rates(os.path.join(self._dir, 'ratings.dat'), '::')
num_test = int(np.ceil(self.all_rating_info.shape[0] * self._test_ratio))
shuffled_idx = np.random.permutation(self.all_rating_info.shape[0])
self.test_rating_info = self.all_rating_info.iloc[shuffled_idx[: num_test]]
self.all_train_rating_info = self.all_rating_info.iloc[shuffled_idx[num_test: ]]
else:
raise NotImplementedError
print('......')
num_valid = int(np.ceil(self.all_train_rating_info.shape[0] * self._valid_ratio))
shuffled_idx = np.random.permutation(self.all_train_rating_info.shape[0])
self.valid_rating_info = self.all_train_rating_info.iloc[shuffled_idx[: num_valid]]
self.train_rating_info = self.all_train_rating_info.iloc[shuffled_idx[num_valid: ]]
self.possible_rating_values = np.unique(self.train_rating_info["rating"].values)
print("All rating pairs : {}".format(self.all_rating_info.shape[0]))
print("\tAll train rating pairs : {}".format(self.all_train_rating_info.shape[0]))
print("\t\tTrain rating pairs : {}".format(self.train_rating_info.shape[0]))
print("\t\tValid rating pairs : {}".format(self.valid_rating_info.shape[0]))
print("\tTest rating pairs : {}".format(self.test_rating_info.shape[0]))
self.user_info = self._drop_unseen_nodes(orign_info=self.user_info,
cmp_col_name="id",
reserved_ids_set=set(self.all_rating_info["user_id"].values),
label="user")
self.movie_info = self._drop_unseen_nodes(orign_info=self.movie_info,
cmp_col_name="id",
reserved_ids_set=set(self.all_rating_info["movie_id"].values),
label="movie")
# Map user/movie to the global id
self.global_user_id_map = {ele: i for i, ele in enumerate(self.user_info['id'])}
self.global_movie_id_map = {ele: i for i, ele in enumerate(self.movie_info['id'])}
print('Total user number = {}, movie number = {}'.format(len(self.global_user_id_map),
len(self.global_movie_id_map)))
self._num_user = len(self.global_user_id_map)
self._num_movie = len(self.global_movie_id_map)
### Generate features
if use_one_hot_fea:
self.user_feature = None
self.movie_feature = None
else:
# if mix_cpu_gpu, we put features in CPU
if mix_cpu_gpu:
self.user_feature = th.FloatTensor(self._process_user_fea())
self.movie_feature = th.FloatTensor(self._process_movie_fea())
else:
self.user_feature = th.FloatTensor(self._process_user_fea()).to(self._device)
self.movie_feature = th.FloatTensor(self._process_movie_fea()).to(self._device)
if self.user_feature is None:
self.user_feature_shape = (self.num_user, self.num_user)
self.movie_feature_shape = (self.num_movie, self.num_movie)
else:
self.user_feature_shape = self.user_feature.shape
self.movie_feature_shape = self.movie_feature.shape
info_line = "Feature dim: "
info_line += "\nuser: {}".format(self.user_feature_shape)
info_line += "\nmovie: {}".format(self.movie_feature_shape)
print(info_line)
all_train_rating_pairs, all_train_rating_values = self._generate_pair_value(self.all_train_rating_info)
train_rating_pairs, train_rating_values = self._generate_pair_value(self.train_rating_info)
valid_rating_pairs, valid_rating_values = self._generate_pair_value(self.valid_rating_info)
test_rating_pairs, test_rating_values = self._generate_pair_value(self.test_rating_info)
def _make_labels(ratings):
labels = th.LongTensor(np.searchsorted(self.possible_rating_values, ratings)).to(device)
return labels
self.train_enc_graph = self._generate_enc_graph(train_rating_pairs, train_rating_values, add_support=True)
self.train_dec_graph = self._generate_dec_graph(train_rating_pairs)
self.train_labels = _make_labels(train_rating_values)
self.train_truths = th.FloatTensor(train_rating_values).to(device)
self.valid_enc_graph = self.train_enc_graph
self.valid_dec_graph = self._generate_dec_graph(valid_rating_pairs)
self.valid_labels = _make_labels(valid_rating_values)
self.valid_truths = th.FloatTensor(valid_rating_values).to(device)
self.test_enc_graph = self._generate_enc_graph(all_train_rating_pairs, all_train_rating_values, add_support=True)
self.test_dec_graph = self._generate_dec_graph(test_rating_pairs)
self.test_labels = _make_labels(test_rating_values)
self.test_truths = th.FloatTensor(test_rating_values).to(device)
def _npairs(graph):
rst = 0
for r in self.possible_rating_values:
r = to_etype_name(r)
rst += graph.number_of_edges(str(r))
return rst
print("Train enc graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.train_enc_graph.number_of_nodes('user'), self.train_enc_graph.number_of_nodes('movie'),
_npairs(self.train_enc_graph)))
print("Train dec graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.train_dec_graph.number_of_nodes('user'), self.train_dec_graph.number_of_nodes('movie'),
self.train_dec_graph.number_of_edges()))
print("Valid enc graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.valid_enc_graph.number_of_nodes('user'), self.valid_enc_graph.number_of_nodes('movie'),
_npairs(self.valid_enc_graph)))
print("Valid dec graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.valid_dec_graph.number_of_nodes('user'), self.valid_dec_graph.number_of_nodes('movie'),
self.valid_dec_graph.number_of_edges()))
print("Test enc graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.test_enc_graph.number_of_nodes('user'), self.test_enc_graph.number_of_nodes('movie'),
_npairs(self.test_enc_graph)))
print("Test dec graph: \t#user:{}\t#movie:{}\t#pairs:{}".format(
self.test_dec_graph.number_of_nodes('user'), self.test_dec_graph.number_of_nodes('movie'),
self.test_dec_graph.number_of_edges()))
def _generate_pair_value(self, rating_info):
rating_pairs = (np.array([self.global_user_id_map[ele] for ele in rating_info["user_id"]],
dtype=np.int64),
np.array([self.global_movie_id_map[ele] for ele in rating_info["movie_id"]],
dtype=np.int64))
rating_values = rating_info["rating"].values.astype(np.float32)
return rating_pairs, rating_values
def _generate_enc_graph(self, rating_pairs, rating_values, add_support=False):
user_movie_R = np.zeros((self._num_user, self._num_movie), dtype=np.float32)
user_movie_R[rating_pairs] = rating_values
data_dict = dict()
num_nodes_dict = {'user': self._num_user, 'movie': self._num_movie}
rating_row, rating_col = rating_pairs
for rating in self.possible_rating_values:
ridx = np.where(rating_values == rating)
rrow = rating_row[ridx]
rcol = rating_col[ridx]
rating = to_etype_name(rating)
data_dict.update({
('user', str(rating), 'movie'): (rrow, rcol),
('movie', 'rev-%s' % str(rating), 'user'): (rcol, rrow)
})
graph = dgl.heterograph(data_dict, num_nodes_dict=num_nodes_dict)
# sanity check
assert len(rating_pairs[0]) == sum([graph.number_of_edges(et) for et in graph.etypes]) // 2
if add_support:
def _calc_norm(x):
x = x.numpy().astype('float32')
x[x == 0.] = np.inf
x = th.FloatTensor(1. / np.sqrt(x))
return x.unsqueeze(1)
user_ci = []
user_cj = []
movie_ci = []
movie_cj = []
for r in self.possible_rating_values:
r = to_etype_name(r)
user_ci.append(graph['rev-%s' % r].in_degrees())
movie_ci.append(graph[r].in_degrees())
if self._symm:
user_cj.append(graph[r].out_degrees())
movie_cj.append(graph['rev-%s' % r].out_degrees())
else:
user_cj.append(th.zeros((self.num_user,)))
movie_cj.append(th.zeros((self.num_movie,)))
user_ci = _calc_norm(sum(user_ci))
movie_ci = _calc_norm(sum(movie_ci))
if self._symm:
user_cj = _calc_norm(sum(user_cj))
movie_cj = _calc_norm(sum(movie_cj))
else:
user_cj = th.ones(self.num_user,)
movie_cj = th.ones(self.num_movie,)
graph.nodes['user'].data.update({'ci' : user_ci, 'cj' : user_cj})
graph.nodes['movie'].data.update({'ci' : movie_ci, 'cj' : movie_cj})
return graph
def _generate_dec_graph(self, rating_pairs):
ones = np.ones_like(rating_pairs[0])
user_movie_ratings_coo = sp.coo_matrix(
(ones, rating_pairs),
shape=(self.num_user, self.num_movie), dtype=np.float32)
g = dgl.bipartite_from_scipy(user_movie_ratings_coo, utype='_U', etype='_E', vtype='_V')
return dgl.heterograph({('user', 'rate', 'movie'): g.edges()},
num_nodes_dict={'user': self.num_user, 'movie': self.num_movie})
@property
def num_links(self):
return self.possible_rating_values.size
@property
def num_user(self):
return self._num_user
@property
def num_movie(self):
return self._num_movie
def _drop_unseen_nodes(self, orign_info, cmp_col_name, reserved_ids_set, label):
# print(" -----------------")
# print("{}: {}(reserved) v.s. {}(from info)".format(label, len(reserved_ids_set),
# len(set(orign_info[cmp_col_name].values))))
if reserved_ids_set != set(orign_info[cmp_col_name].values):
pd_rating_ids = pd.DataFrame(list(reserved_ids_set), columns=["id_graph"])
# print("\torign_info: ({}, {})".format(orign_info.shape[0], orign_info.shape[1]))
data_info = orign_info.merge(pd_rating_ids, left_on=cmp_col_name, right_on='id_graph', how='outer')
data_info = data_info.dropna(subset=[cmp_col_name, 'id_graph'])
data_info = data_info.drop(columns=["id_graph"])
data_info = data_info.reset_index(drop=True)
# print("\tAfter dropping, data shape: ({}, {})".format(data_info.shape[0], data_info.shape[1]))
return data_info
else:
orign_info = orign_info.reset_index(drop=True)
return orign_info
def _load_raw_rates(self, file_path, sep):
"""In MovieLens, the rates have the following format
ml-100k
user id \t movie id \t rating \t timestamp
ml-1m/10m
UserID::MovieID::Rating::Timestamp
timestamp is unix timestamp and can be converted by pd.to_datetime(X, unit='s')
Parameters
----------
file_path : str
Returns
-------
rating_info : pd.DataFrame
"""
rating_info = pd.read_csv(
file_path, sep=sep, header=None,
names=['user_id', 'movie_id', 'rating', 'timestamp'],
dtype={'user_id': np.int32, 'movie_id' : np.int32,
'ratings': np.float32, 'timestamp': np.int64}, engine='python')
return rating_info
def _load_raw_user_info(self):
"""In MovieLens, the user attributes file have the following formats:
ml-100k:
user id | age | gender | occupation | zip code
ml-1m:
UserID::Gender::Age::Occupation::Zip-code
For ml-10m, there is no user information. We read the user id from the rating file.
Parameters
----------
name : str
Returns
-------
user_info : pd.DataFrame
"""
if self._name == 'ml-100k':
self.user_info = pd.read_csv(os.path.join(self._dir, 'u.user'), sep='|', header=None,
names=['id', 'age', 'gender', 'occupation', 'zip_code'], engine='python')
elif self._name == 'ml-1m':
self.user_info = pd.read_csv(os.path.join(self._dir, 'users.dat'), sep='::', header=None,
names=['id', 'gender', 'age', 'occupation', 'zip_code'], engine='python')
elif self._name == 'ml-10m':
rating_info = pd.read_csv(
os.path.join(self._dir, 'ratings.dat'), sep='::', header=None,
names=['user_id', 'movie_id', 'rating', 'timestamp'],
dtype={'user_id': np.int32, 'movie_id': np.int32, 'ratings': np.float32,
'timestamp': np.int64}, engine='python')
self.user_info = pd.DataFrame(np.unique(rating_info['user_id'].values.astype(np.int32)),
columns=['id'])
else:
raise NotImplementedError
def _process_user_fea(self):
"""
Parameters
----------
user_info : pd.DataFrame
name : str
For ml-100k and ml-1m, the column name is ['id', 'gender', 'age', 'occupation', 'zip_code'].
We take the age, gender, and the one-hot encoding of the occupation as the user features.
For ml-10m, there is no user feature and we set the feature to be a single zero.
Returns
-------
user_features : np.ndarray
"""
if self._name == 'ml-100k' or self._name == 'ml-1m':
ages = self.user_info['age'].values.astype(np.float32)
gender = (self.user_info['gender'] == 'F').values.astype(np.float32)
all_occupations = set(self.user_info['occupation'])
occupation_map = {ele: i for i, ele in enumerate(all_occupations)}
occupation_one_hot = np.zeros(shape=(self.user_info.shape[0], len(all_occupations)),
dtype=np.float32)
occupation_one_hot[np.arange(self.user_info.shape[0]),
np.array([occupation_map[ele] for ele in self.user_info['occupation']])] = 1
user_features = np.concatenate([ages.reshape((self.user_info.shape[0], 1)) / 50.0,
gender.reshape((self.user_info.shape[0], 1)),
occupation_one_hot], axis=1)
elif self._name == 'ml-10m':
user_features = np.zeros(shape=(self.user_info.shape[0], 1), dtype=np.float32)
else:
raise NotImplementedError
return user_features
def _load_raw_movie_info(self):
"""In MovieLens, the movie attributes may have the following formats:
In ml_100k:
movie id | movie title | release date | video release date | IMDb URL | [genres]
In ml_1m, ml_10m:
MovieID::Title (Release Year)::Genres
Also, Genres are separated by |, e.g., Adventure|Animation|Children|Comedy|Fantasy
Parameters
----------
name : str
Returns
-------
movie_info : pd.DataFrame
For ml-100k, the column name is ['id', 'title', 'release_date', 'video_release_date', 'url'] + [GENRES (19)]]
For ml-1m and ml-10m, the column name is ['id', 'title'] + [GENRES (18/20)]]
"""
if self._name == 'ml-100k':
GENRES = GENRES_ML_100K
elif self._name == 'ml-1m':
GENRES = GENRES_ML_1M
elif self._name == 'ml-10m':
GENRES = GENRES_ML_10M
else:
raise NotImplementedError
if self._name == 'ml-100k':
file_path = os.path.join(self._dir, 'u.item')
self.movie_info = pd.read_csv(file_path, sep='|', header=None,
names=['id', 'title', 'release_date', 'video_release_date', 'url'] + GENRES,
encoding='iso-8859-1')
elif self._name == 'ml-1m' or self._name == 'ml-10m':
file_path = os.path.join(self._dir, 'movies.dat')
movie_info = pd.read_csv(file_path, sep='::', header=None,
names=['id', 'title', 'genres'], encoding='iso-8859-1')
genre_map = {ele: i for i, ele in enumerate(GENRES)}
genre_map['Children\'s'] = genre_map['Children']
genre_map['Childrens'] = genre_map['Children']
movie_genres = np.zeros(shape=(movie_info.shape[0], len(GENRES)), dtype=np.float32)
for i, genres in enumerate(movie_info['genres']):
for ele in genres.split('|'):
if ele in genre_map:
movie_genres[i, genre_map[ele]] = 1.0
else:
print('genres not found, filled with unknown: {}'.format(genres))
movie_genres[i, genre_map['unknown']] = 1.0
for idx, genre_name in enumerate(GENRES):
assert idx == genre_map[genre_name]
movie_info[genre_name] = movie_genres[:, idx]
self.movie_info = movie_info.drop(columns=["genres"])
else:
raise NotImplementedError
def _process_movie_fea(self):
"""
Parameters
----------
movie_info : pd.DataFrame
name : str
Returns
-------
movie_features : np.ndarray
Generate movie features by concatenating embedding and the year
"""
import torchtext
from torchtext.data.utils import get_tokenizer
if self._name == 'ml-100k':
GENRES = GENRES_ML_100K
elif self._name == 'ml-1m':
GENRES = GENRES_ML_1M
elif self._name == 'ml-10m':
GENRES = GENRES_ML_10M
else:
raise NotImplementedError
# Old torchtext-legacy API commented below
# TEXT = torchtext.legacy.data.Field(tokenize='spacy', tokenizer_language='en_core_web_sm')
tokenizer = get_tokenizer('spacy', language='en_core_web_sm') # new API (torchtext 0.9+)
embedding = torchtext.vocab.GloVe(name='840B', dim=300)
title_embedding = np.zeros(shape=(self.movie_info.shape[0], 300), dtype=np.float32)
release_years = np.zeros(shape=(self.movie_info.shape[0], 1), dtype=np.float32)
p = re.compile(r'(.+)\s*\((\d+)\)')
for i, title in enumerate(self.movie_info['title']):
match_res = p.match(title)
if match_res is None:
print('{} cannot be matched, index={}, name={}'.format(title, i, self._name))
title_context, year = title, 1950
else:
title_context, year = match_res.groups()
# We use average of glove
# Upgraded torchtext API: TEXT.tokenize(title_context) --> tokenizer(title_context)
title_embedding[i, :] = embedding.get_vecs_by_tokens(tokenizer(title_context)).numpy().mean(axis=0)
release_years[i] = float(year)
movie_features = np.concatenate((title_embedding,
(release_years - 1950.0) / 100.0,
self.movie_info[GENRES]),
axis=1)
return movie_features
if __name__ == '__main__':
MovieLens("ml-100k", device=th.device('cpu'), symm=True)