-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_sampling.py
384 lines (343 loc) · 16.8 KB
/
train_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""Training GCMC model on the MovieLens data set by mini-batch sampling.
The script loads the full graph in CPU and samples subgraphs for computing
gradients on the training device. The script also supports multi-GPU for
further acceleration.
"""
import os, time
import argparse
import logging
import random
import string
import traceback
import numpy as np
import tqdm
import torch as th
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
from data import MovieLens
from model import GCMCLayer, DenseBiDecoder, BiDecoder
from utils import get_activation, get_optimizer, torch_total_param_num, torch_net_info, MetricLogger, to_etype_name
import dgl
import torch.multiprocessing as mp
class Net(nn.Module):
def __init__(self, args, dev_id):
super(Net, self).__init__()
self._act = get_activation(args.model_activation)
self.encoder = GCMCLayer(args.rating_vals,
args.src_in_units,
args.dst_in_units,
args.gcn_agg_units,
args.gcn_out_units,
args.gcn_dropout,
args.gcn_agg_accum,
agg_act=self._act,
share_user_item_param=args.share_param,
device=dev_id)
if args.mix_cpu_gpu and args.use_one_hot_fea:
# if use_one_hot_fea, user and movie feature is None
# W can be extremely large, with mix_cpu_gpu W should be stored in CPU
self.encoder.partial_to(dev_id)
else:
self.encoder.to(dev_id)
self.decoder = BiDecoder(in_units=args.gcn_out_units,
num_classes=len(args.rating_vals),
num_basis=args.gen_r_num_basis_func)
self.decoder.to(dev_id)
def forward(self, compact_g, frontier, ufeat, ifeat, possible_rating_values):
user_out, movie_out = self.encoder(frontier, ufeat, ifeat)
pred_ratings = self.decoder(compact_g, user_out, movie_out)
return pred_ratings
def load_subtensor(input_nodes, pair_graph, blocks, dataset, parent_graph):
output_nodes = pair_graph.ndata[dgl.NID]
head_feat = input_nodes['user'] if dataset.user_feature is None else \
dataset.user_feature[input_nodes['user']]
tail_feat = input_nodes['movie'] if dataset.movie_feature is None else \
dataset.movie_feature[input_nodes['movie']]
for block in blocks:
block.dstnodes['user'].data['ci'] = \
parent_graph.nodes['user'].data['ci'][block.dstnodes['user'].data[dgl.NID]]
block.srcnodes['user'].data['cj'] = \
parent_graph.nodes['user'].data['cj'][block.srcnodes['user'].data[dgl.NID]]
block.dstnodes['movie'].data['ci'] = \
parent_graph.nodes['movie'].data['ci'][block.dstnodes['movie'].data[dgl.NID]]
block.srcnodes['movie'].data['cj'] = \
parent_graph.nodes['movie'].data['cj'][block.srcnodes['movie'].data[dgl.NID]]
return head_feat, tail_feat, blocks
def flatten_etypes(pair_graph, dataset, segment):
n_users = pair_graph.number_of_nodes('user')
n_movies = pair_graph.number_of_nodes('movie')
src = []
dst = []
labels = []
ratings = []
for rating in dataset.possible_rating_values:
src_etype, dst_etype = pair_graph.edges(order='eid', etype=to_etype_name(rating))
src.append(src_etype)
dst.append(dst_etype)
label = np.searchsorted(dataset.possible_rating_values, rating)
ratings.append(th.LongTensor(np.full_like(src_etype, rating)))
labels.append(th.LongTensor(np.full_like(src_etype, label)))
src = th.cat(src)
dst = th.cat(dst)
ratings = th.cat(ratings)
labels = th.cat(labels)
flattened_pair_graph = dgl.heterograph({
('user', 'rate', 'movie'): (src, dst)},
num_nodes_dict={'user': n_users, 'movie': n_movies})
flattened_pair_graph.edata['rating'] = ratings
flattened_pair_graph.edata['label'] = labels
return flattened_pair_graph
def evaluate(args, dev_id, net, dataset, dataloader, segment='valid'):
possible_rating_values = dataset.possible_rating_values
nd_possible_rating_values = th.FloatTensor(possible_rating_values).to(dev_id)
real_pred_ratings = []
true_rel_ratings = []
for input_nodes, pair_graph, blocks in dataloader:
head_feat, tail_feat, blocks = load_subtensor(
input_nodes, pair_graph, blocks, dataset,
dataset.valid_enc_graph if segment == 'valid' else dataset.test_enc_graph)
frontier = blocks[0]
true_relation_ratings = \
dataset.valid_truths[pair_graph.edata[dgl.EID]] if segment == 'valid' else \
dataset.test_truths[pair_graph.edata[dgl.EID]]
frontier = frontier.to(dev_id)
head_feat = head_feat.to(dev_id)
tail_feat = tail_feat.to(dev_id)
pair_graph = pair_graph.to(dev_id)
with th.no_grad():
pred_ratings = net(pair_graph, frontier,
head_feat, tail_feat, possible_rating_values)
batch_pred_ratings = (th.softmax(pred_ratings, dim=1) *
nd_possible_rating_values.view(1, -1)).sum(dim=1)
real_pred_ratings.append(batch_pred_ratings)
true_rel_ratings.append(true_relation_ratings)
real_pred_ratings = th.cat(real_pred_ratings, dim=0)
true_rel_ratings = th.cat(true_rel_ratings, dim=0).to(dev_id)
rmse = ((real_pred_ratings - true_rel_ratings) ** 2.).mean().item()
rmse = np.sqrt(rmse)
return rmse
def config():
parser = argparse.ArgumentParser(description='GCMC')
parser.add_argument('--seed', default=123, type=int)
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--save_dir', type=str, help='The saving directory')
parser.add_argument('--save_id', type=int, help='The saving log id')
parser.add_argument('--silent', action='store_true')
parser.add_argument('--data_name', default='ml-1m', type=str,
help='The dataset name: ml-100k, ml-1m, ml-10m')
parser.add_argument('--data_test_ratio', type=float, default=0.1) ## for ml-100k the test ration is 0.2
parser.add_argument('--data_valid_ratio', type=float, default=0.1)
parser.add_argument('--use_one_hot_fea', action='store_true', default=False)
parser.add_argument('--model_activation', type=str, default="leaky")
parser.add_argument('--gcn_dropout', type=float, default=0.7)
parser.add_argument('--gcn_agg_norm_symm', type=bool, default=True)
parser.add_argument('--gcn_agg_units', type=int, default=500)
parser.add_argument('--gcn_agg_accum', type=str, default="sum")
parser.add_argument('--gcn_out_units', type=int, default=75)
parser.add_argument('--gen_r_num_basis_func', type=int, default=2)
parser.add_argument('--train_max_epoch', type=int, default=1000)
parser.add_argument('--train_log_interval', type=int, default=1)
parser.add_argument('--train_valid_interval', type=int, default=1)
parser.add_argument('--train_optimizer', type=str, default="adam")
parser.add_argument('--train_grad_clip', type=float, default=1.0)
parser.add_argument('--train_lr', type=float, default=0.01)
parser.add_argument('--train_min_lr', type=float, default=0.0001)
parser.add_argument('--train_lr_decay_factor', type=float, default=0.5)
parser.add_argument('--train_decay_patience', type=int, default=25)
parser.add_argument('--train_early_stopping_patience', type=int, default=50)
parser.add_argument('--share_param', default=False, action='store_true')
parser.add_argument('--mix_cpu_gpu', default=False, action='store_true')
parser.add_argument('--minibatch_size', type=int, default=20000)
parser.add_argument('--num_workers_per_gpu', type=int, default=8)
args = parser.parse_args()
### configure save_fir to save all the info
if args.save_dir is None:
args.save_dir = args.data_name+"_" + ''.join(random.choices(string.ascii_uppercase + string.digits, k=2))
if args.save_id is None:
args.save_id = np.random.randint(20)
args.save_dir = os.path.join("log", args.save_dir)
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
return args
def run(proc_id, n_gpus, args, devices, dataset):
dev_id = devices[proc_id]
if n_gpus > 1:
dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
master_ip='127.0.0.1', master_port='12345')
world_size = n_gpus
th.distributed.init_process_group(backend="nccl",
init_method=dist_init_method,
world_size=world_size,
rank=dev_id)
if n_gpus > 0:
th.cuda.set_device(dev_id)
train_labels = dataset.train_labels
train_truths = dataset.train_truths
num_edges = train_truths.shape[0]
reverse_types = {to_etype_name(k): 'rev-' + to_etype_name(k)
for k in dataset.possible_rating_values}
reverse_types.update({v: k for k, v in reverse_types.items()})
sampler = dgl.dataloading.MultiLayerNeighborSampler([None], return_eids=True)
dataloader = dgl.dataloading.EdgeDataLoader(
dataset.train_enc_graph,
{to_etype_name(k): th.arange(
dataset.train_enc_graph.number_of_edges(etype=to_etype_name(k)))
for k in dataset.possible_rating_values},
sampler,
use_ddp=n_gpus > 1,
batch_size=args.minibatch_size,
shuffle=True,
drop_last=False)
if proc_id == 0:
valid_dataloader = dgl.dataloading.EdgeDataLoader(
dataset.valid_dec_graph,
th.arange(dataset.valid_dec_graph.number_of_edges()),
sampler,
g_sampling=dataset.valid_enc_graph,
batch_size=args.minibatch_size,
shuffle=False,
drop_last=False)
test_dataloader = dgl.dataloading.EdgeDataLoader(
dataset.test_dec_graph,
th.arange(dataset.test_dec_graph.number_of_edges()),
sampler,
g_sampling=dataset.test_enc_graph,
batch_size=args.minibatch_size,
shuffle=False,
drop_last=False)
nd_possible_rating_values = \
th.FloatTensor(dataset.possible_rating_values)
nd_possible_rating_values = nd_possible_rating_values.to(dev_id)
net = Net(args=args, dev_id=dev_id)
net = net.to(dev_id)
if n_gpus > 1:
net = DistributedDataParallel(net, device_ids=[dev_id], output_device=dev_id)
rating_loss_net = nn.CrossEntropyLoss()
learning_rate = args.train_lr
optimizer = get_optimizer(args.train_optimizer)(net.parameters(), lr=learning_rate)
print("Loading network finished ...\n")
### declare the loss information
best_valid_rmse = np.inf
no_better_valid = 0
best_epoch = -1
count_rmse = 0
count_num = 0
count_loss = 0
print("Start training ...")
dur = []
iter_idx = 1
for epoch in range(1, args.train_max_epoch):
if n_gpus > 1:
dataloader.set_epoch(epoch)
if epoch > 1:
t0 = time.time()
net.train()
with tqdm.tqdm(dataloader) as tq:
for step, (input_nodes, pair_graph, blocks) in enumerate(tq):
head_feat, tail_feat, blocks = load_subtensor(
input_nodes, pair_graph, blocks, dataset, dataset.train_enc_graph)
frontier = blocks[0]
compact_g = flatten_etypes(pair_graph, dataset, 'train').to(dev_id)
true_relation_labels = compact_g.edata['label']
true_relation_ratings = compact_g.edata['rating']
head_feat = head_feat.to(dev_id)
tail_feat = tail_feat.to(dev_id)
frontier = frontier.to(dev_id)
pred_ratings = net(compact_g, frontier, head_feat, tail_feat, dataset.possible_rating_values)
loss = rating_loss_net(pred_ratings, true_relation_labels.to(dev_id)).mean()
count_loss += loss.item()
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(net.parameters(), args.train_grad_clip)
optimizer.step()
if proc_id == 0 and iter_idx == 1:
print("Total #Param of net: %d" % (torch_total_param_num(net)))
real_pred_ratings = (th.softmax(pred_ratings, dim=1) *
nd_possible_rating_values.view(1, -1)).sum(dim=1)
rmse = ((real_pred_ratings - true_relation_ratings.to(dev_id)) ** 2).sum()
count_rmse += rmse.item()
count_num += pred_ratings.shape[0]
tq.set_postfix({'loss': '{:.4f}'.format(count_loss / iter_idx),
'rmse': '{:.4f}'.format(count_rmse / count_num)},
refresh=False)
iter_idx += 1
if epoch > 1:
epoch_time = time.time() - t0
print("Epoch {} time {}".format(epoch, epoch_time))
if epoch % args.train_valid_interval == 0:
if n_gpus > 1:
th.distributed.barrier()
if proc_id == 0:
valid_rmse = evaluate(args=args,
dev_id=dev_id,
net=net,
dataset=dataset,
dataloader=valid_dataloader,
segment='valid')
logging_str = 'Val RMSE={:.4f}'.format(valid_rmse)
if valid_rmse < best_valid_rmse:
best_valid_rmse = valid_rmse
no_better_valid = 0
best_epoch = epoch
test_rmse = evaluate(args=args,
dev_id=dev_id,
net=net,
dataset=dataset,
dataloader=test_dataloader,
segment='test')
best_test_rmse = test_rmse
logging_str += ', Test RMSE={:.4f}'.format(test_rmse)
else:
no_better_valid += 1
if no_better_valid > args.train_early_stopping_patience\
and learning_rate <= args.train_min_lr:
logging.info("Early stopping threshold reached. Stop training.")
break
if no_better_valid > args.train_decay_patience:
new_lr = max(learning_rate * args.train_lr_decay_factor, args.train_min_lr)
if new_lr < learning_rate:
logging.info("\tChange the LR to %g" % new_lr)
learning_rate = new_lr
for p in optimizer.param_groups:
p['lr'] = learning_rate
no_better_valid = 0
print("Change the LR to %g" % new_lr)
# sync on evalution
if n_gpus > 1:
th.distributed.barrier()
if proc_id == 0:
print(logging_str)
if proc_id == 0:
print('Best epoch Idx={}, Best Valid RMSE={:.4f}, Best Test RMSE={:.4f}'.format(
best_epoch, best_valid_rmse, best_test_rmse))
if __name__ == '__main__':
args = config()
devices = list(map(int, args.gpu.split(',')))
n_gpus = len(devices)
# For GCMC based on sampling, we require node has its own features.
# Otherwise (node_id is the feature), the model can not scale
dataset = MovieLens(args.data_name,
'cpu',
mix_cpu_gpu=args.mix_cpu_gpu,
use_one_hot_fea=args.use_one_hot_fea,
symm=args.gcn_agg_norm_symm,
test_ratio=args.data_test_ratio,
valid_ratio=args.data_valid_ratio)
print("Loading data finished ...\n")
args.src_in_units = dataset.user_feature_shape[1]
args.dst_in_units = dataset.movie_feature_shape[1]
args.rating_vals = dataset.possible_rating_values
# cpu
if devices[0] == -1:
run(0, 0, args, ['cpu'], dataset)
# gpu
elif n_gpus == 1:
run(0, n_gpus, args, devices, dataset)
# multi gpu
else:
# Create csr/coo/csc formats before launching training processes with multi-gpu.
# This avoids creating certain formats in each sub-process, which saves momory and CPU.
dataset.train_enc_graph.create_formats_()
dataset.train_dec_graph.create_formats_()
mp.spawn(run, args=(n_gpus, args, devices, dataset), nprocs=n_gpus)