-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
82 lines (67 loc) · 2.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import csv
import re
import torch as th
import numpy as np
import torch.nn as nn
import torch.optim as optim
from collections import OrderedDict
class MetricLogger(object):
def __init__(self, attr_names, parse_formats, save_path):
self._attr_format_dict = OrderedDict(zip(attr_names, parse_formats))
self._file = open(save_path, 'w')
self._csv = csv.writer(self._file)
self._csv.writerow(attr_names)
self._file.flush()
def log(self, **kwargs):
self._csv.writerow([parse_format % kwargs[attr_name]
for attr_name, parse_format in self._attr_format_dict.items()])
self._file.flush()
def close(self):
self._file.close()
def torch_total_param_num(net):
return sum([np.prod(p.shape) for p in net.parameters()])
def torch_net_info(net, save_path=None):
info_str = 'Total Param Number: {}\n'.format(torch_total_param_num(net)) +\
'Params:\n'
for k, v in net.named_parameters():
info_str += '\t{}: {}, {}\n'.format(k, v.shape, np.prod(v.shape))
info_str += str(net)
if save_path is not None:
with open(save_path, 'w') as f:
f.write(info_str)
return info_str
def get_activation(act):
"""Get the activation based on the act string
Parameters
----------
act: str or callable function
Returns
-------
ret: callable function
"""
if act is None:
return lambda x: x
if isinstance(act, str):
if act == 'leaky':
return nn.LeakyReLU(0.1)
elif act == 'relu':
return nn.ReLU()
elif act == 'tanh':
return nn.Tanh()
elif act == 'sigmoid':
return nn.Sigmoid()
elif act == 'softsign':
return nn.Softsign()
else:
raise NotImplementedError
else:
return act
def get_optimizer(opt):
if opt == 'sgd':
return optim.SGD
elif opt == 'adam':
return optim.Adam
else:
raise NotImplementedError
def to_etype_name(rating):
return str(rating).replace('.', '_')