-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
131 lines (104 loc) · 4.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from modelnet import ModelNet
from model import Model, compute_loss
from dgl.data.utils import download, get_download_dir
from functools import partial
import tqdm
import urllib
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset-path', type=str, default='')
parser.add_argument('--load-model-path', type=str, default='')
parser.add_argument('--save-model-path', type=str, default='')
parser.add_argument('--num-epochs', type=int, default=100)
parser.add_argument('--num-workers', type=int, default=0)
parser.add_argument('--batch-size', type=int, default=32)
args = parser.parse_args()
num_workers = args.num_workers
batch_size = args.batch_size
data_filename = 'modelnet40-sampled-2048.h5'
local_path = args.dataset_path or os.path.join(get_download_dir(), data_filename)
if not os.path.exists(local_path):
download('https://data.dgl.ai/dataset/modelnet40-sampled-2048.h5', local_path)
CustomDataLoader = partial(
DataLoader,
num_workers=num_workers,
batch_size=batch_size,
shuffle=True,
drop_last=True)
def train(model, opt, scheduler, train_loader, dev):
scheduler.step()
model.train()
total_loss = 0
num_batches = 0
total_correct = 0
count = 0
with tqdm.tqdm(train_loader, ascii=True) as tq:
for data, label in tq:
num_examples = label.shape[0]
data, label = data.to(dev), label.to(dev).squeeze().long()
opt.zero_grad()
logits = model(data)
loss = compute_loss(logits, label)
loss.backward()
opt.step()
_, preds = logits.max(1)
num_batches += 1
count += num_examples
loss = loss.item()
correct = (preds == label).sum().item()
total_loss += loss
total_correct += correct
tq.set_postfix({
'Loss': '%.5f' % loss,
'AvgLoss': '%.5f' % (total_loss / num_batches),
'Acc': '%.5f' % (correct / num_examples),
'AvgAcc': '%.5f' % (total_correct / count)})
def evaluate(model, test_loader, dev):
model.eval()
total_correct = 0
count = 0
with torch.no_grad():
with tqdm.tqdm(test_loader, ascii=True) as tq:
for data, label in tq:
num_examples = label.shape[0]
data, label = data.to(dev), label.to(dev).squeeze().long()
logits = model(data)
_, preds = logits.max(1)
correct = (preds == label).sum().item()
total_correct += correct
count += num_examples
tq.set_postfix({
'Acc': '%.5f' % (correct / num_examples),
'AvgAcc': '%.5f' % (total_correct / count)})
return total_correct / count
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Model(20, [64, 64, 128, 256], [512, 512, 256], 40)
model = model.to(dev)
if args.load_model_path:
model.load_state_dict(torch.load(args.load_model_path, map_location=dev))
opt = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
scheduler = optim.lr_scheduler.CosineAnnealingLR(opt, args.num_epochs, eta_min=0.001)
modelnet = ModelNet(local_path, 1024)
train_loader = CustomDataLoader(modelnet.train())
valid_loader = CustomDataLoader(modelnet.valid())
test_loader = CustomDataLoader(modelnet.test())
best_valid_acc = 0
best_test_acc = 0
for epoch in range(args.num_epochs):
print('Epoch #%d Validating' % epoch)
valid_acc = evaluate(model, valid_loader, dev)
test_acc = evaluate(model, test_loader, dev)
if valid_acc > best_valid_acc:
best_valid_acc = valid_acc
best_test_acc = test_acc
if args.save_model_path:
torch.save(model.state_dict(), args.save_model_path)
print('Current validation acc: %.5f (best: %.5f), test acc: %.5f (best: %.5f)' % (
valid_acc, best_valid_acc, test_acc, best_test_acc))
train(model, opt, scheduler, train_loader, dev)