-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
30 lines (24 loc) · 842 Bytes
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
import numpy as np
import pandas as pd
def load_data(file_path, len_train, len_val):
df = pd.read_csv(file_path, header=None).values.astype(float)
train = df[: len_train]
val = df[len_train: len_train + len_val]
test = df[len_train + len_val:]
return train, val, test
def data_transform(data, n_his, n_pred, device):
# produce data slices for training and testing
n_route = data.shape[1]
l = len(data)
num = l-n_his-n_pred
x = np.zeros([num, 1, n_his, n_route])
y = np.zeros([num, n_route])
cnt = 0
for i in range(l-n_his-n_pred):
head = i
tail = i + n_his
x[cnt, :, :, :] = data[head: tail].reshape(1, n_his, n_route)
y[cnt] = data[tail + n_pred - 1]
cnt += 1
return torch.Tensor(x).to(device), torch.Tensor(y).to(device)