-
Notifications
You must be signed in to change notification settings - Fork 0
/
entity_classify.py
214 lines (188 loc) · 8.52 KB
/
entity_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn
Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
import argparse
import numpy as np
import time
import tensorflow as tf
from tensorflow.keras import layers
import dgl
from dgl.nn.tensorflow import RelGraphConv
from functools import partial
from dgl.data.rdf import AIFBDataset, MUTAGDataset, BGSDataset, AMDataset
from model import BaseRGCN
class EntityClassify(BaseRGCN):
def create_features(self):
features = tf.range(self.num_nodes)
return features
def build_input_layer(self):
return RelGraphConv(self.num_nodes, self.h_dim, self.num_rels, "basis",
self.num_bases, activation=tf.nn.relu, self_loop=self.use_self_loop,
dropout=self.dropout)
def build_hidden_layer(self, idx):
return RelGraphConv(self.h_dim, self.h_dim, self.num_rels, "basis",
self.num_bases, activation=tf.nn.relu, self_loop=self.use_self_loop,
dropout=self.dropout)
def build_output_layer(self):
return RelGraphConv(self.h_dim, self.out_dim, self.num_rels, "basis",
self.num_bases, activation=partial(tf.nn.softmax, axis=1),
self_loop=self.use_self_loop)
def acc(logits, labels, mask):
logits = tf.gather(logits, mask)
labels = tf.gather(labels, mask)
indices = tf.math.argmax(logits, axis=1)
acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32))
return acc
def main(args):
# load graph data
if args.dataset == 'aifb':
dataset = AIFBDataset()
elif args.dataset == 'mutag':
dataset = MUTAGDataset()
elif args.dataset == 'bgs':
dataset = BGSDataset()
elif args.dataset == 'am':
dataset = AMDataset()
else:
raise ValueError()
# preprocessing in cpu
with tf.device("/cpu:0"):
# Load from hetero-graph
hg = dataset[0]
num_rels = len(hg.canonical_etypes)
category = dataset.predict_category
num_classes = dataset.num_classes
train_mask = hg.nodes[category].data.pop('train_mask')
test_mask = hg.nodes[category].data.pop('test_mask')
train_idx = tf.squeeze(tf.where(train_mask))
test_idx = tf.squeeze(tf.where(test_mask))
labels = hg.nodes[category].data.pop('labels')
# split dataset into train, validate, test
if args.validation:
val_idx = train_idx[:len(train_idx) // 5]
train_idx = train_idx[len(train_idx) // 5:]
else:
val_idx = train_idx
# calculate norm for each edge type and store in edge
for canonical_etype in hg.canonical_etypes:
u, v, eid = hg.all_edges(form='all', etype=canonical_etype)
_, inverse_index, count = tf.unique_with_counts(v)
degrees = tf.gather(count, inverse_index)
norm = tf.ones(eid.shape[0]) / tf.cast(degrees, tf.float32)
norm = tf.expand_dims(norm, 1)
hg.edges[canonical_etype].data['norm'] = norm
# get target category id
category_id = len(hg.ntypes)
for i, ntype in enumerate(hg.ntypes):
if ntype == category:
category_id = i
# edge type and normalization factor
g = dgl.to_homogeneous(hg, edata=['norm'])
# check cuda
if args.gpu < 0:
device = "/cpu:0"
use_cuda = False
else:
device = "/gpu:{}".format(args.gpu)
g = g.to(device)
use_cuda = True
num_nodes = g.number_of_nodes()
node_ids = tf.range(num_nodes, dtype=tf.int64)
edge_norm = g.edata['norm']
edge_type = tf.cast(g.edata[dgl.ETYPE], tf.int64)
# find out the target node ids in g
node_tids = g.ndata[dgl.NTYPE]
loc = (node_tids == category_id)
target_idx = tf.squeeze(tf.where(loc))
# since the nodes are featureless, the input feature is then the node id.
feats = tf.range(num_nodes, dtype=tf.int64)
with tf.device(device):
# create model
model = EntityClassify(num_nodes,
args.n_hidden,
num_classes,
num_rels,
num_bases=args.n_bases,
num_hidden_layers=args.n_layers - 2,
dropout=args.dropout,
use_self_loop=args.use_self_loop,
use_cuda=use_cuda)
# optimizer
optimizer = tf.keras.optimizers.Adam(
learning_rate=args.lr)
# training loop
print("start training...")
forward_time = []
backward_time = []
loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=False)
for epoch in range(args.n_epochs):
t0 = time.time()
with tf.GradientTape() as tape:
logits = model(g, feats, edge_type, edge_norm)
logits = tf.gather(logits, target_idx)
loss = loss_fcn(tf.gather(labels, train_idx), tf.gather(logits, train_idx))
# Manually Weight Decay
# We found Tensorflow has a different implementation on weight decay
# of Adam(W) optimizer with PyTorch. And this results in worse results.
# Manually adding weights to the loss to do weight decay solves this problem.
for weight in model.trainable_weights:
loss = loss + \
args.l2norm * tf.nn.l2_loss(weight)
t1 = time.time()
grads = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
t2 = time.time()
forward_time.append(t1 - t0)
backward_time.append(t2 - t1)
print("Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
format(epoch, forward_time[-1], backward_time[-1]))
train_acc = acc(logits, labels, train_idx)
val_loss = loss_fcn(tf.gather(labels, val_idx), tf.gather(logits, val_idx))
val_acc = acc(logits, labels, val_idx)
print("Train Accuracy: {:.4f} | Train Loss: {:.4f} | Validation Accuracy: {:.4f} | Validation loss: {:.4f}".
format(train_acc, loss.numpy().item(), val_acc, val_loss.numpy().item()))
print()
logits = model(g, feats, edge_type, edge_norm)
logits = tf.gather(logits, target_idx)
test_loss = loss_fcn(tf.gather(labels, test_idx), tf.gather(logits, test_idx))
test_acc = acc(logits, labels, test_idx)
print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.numpy().item()))
print()
print("Mean forward time: {:4f}".format(np.mean(forward_time[len(forward_time) // 4:])))
print("Mean backward time: {:4f}".format(np.mean(backward_time[len(backward_time) // 4:])))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='RGCN')
parser.add_argument("--dropout", type=float, default=0,
help="dropout probability")
parser.add_argument("--n-hidden", type=int, default=16,
help="number of hidden units")
parser.add_argument("--gpu", type=int, default=-1,
help="gpu")
parser.add_argument("--lr", type=float, default=1e-2,
help="learning rate")
parser.add_argument("--n-bases", type=int, default=-1,
help="number of filter weight matrices, default: -1 [use all]")
parser.add_argument("--n-layers", type=int, default=2,
help="number of propagation rounds")
parser.add_argument("-e", "--n-epochs", type=int, default=50,
help="number of training epochs")
parser.add_argument("-d", "--dataset", type=str, required=True,
help="dataset to use")
parser.add_argument("--l2norm", type=float, default=0,
help="l2 norm coef")
parser.add_argument("--use-self-loop", default=False, action='store_true',
help="include self feature as a special relation")
fp = parser.add_mutually_exclusive_group(required=False)
fp.add_argument('--validation', dest='validation', action='store_true')
fp.add_argument('--testing', dest='validation', action='store_false')
parser.set_defaults(validation=True)
args = parser.parse_args()
print(args)
args.bfs_level = args.n_layers + 1 # pruning used nodes for memory
main(args)