-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
executable file
·150 lines (119 loc) · 4.39 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
import mlp
from sys import stderr
def read_mnist_csv(path, n, with_class, with_header=True):
X = np.empty((n, 28 * 28)) # 28 * 28 is number of pixels
if with_class:
Y = np.zeros((n, 10), dtype=int) # 4 bits to store up to 10
threshold = 127
with open(path) as file:
if with_header:
file.readline() # skip first line
for i, line in enumerate(file):
line = line.strip()
if not line:
continue # skip blank lines
line = line.split(',')
if with_class:
y = int(line[0])
Y[i, y] = 1
line = line[1:]
c = 0 # will hold number of pixels above threshold
for j, px in enumerate(line):
px = int(px)
if px > threshold:
c += 1
X[i, j] = (255 - px)/255 # normalize and invert color
# X[i, 28 * 28] = c/(28 * 28) # normalize
if with_class:
return X, Y
else:
return X
def save_model(model):
layers = model['layers']
np.save('hidden.npy', layers['hidden'])
np.save('output.npy', layers['output'])
def pca(A, B=None, numpc=None):
A = (A - np.mean(A.T, axis=1)).T
latentA, coeffA = np.linalg.eig(np.cov(A))
idx = np.argsort(latentA)
idx = idx[::-1]
coeffA = coeffA[:,idx]
latentA = latentA[idx]
coeffA = coeffA[:,range(numpc)]
A = (coeffA.T @ A).T
if B is not None:
B = (B - np.mean(B.T, axis=1)).T
latentB, coeffB = np.linalg.eig(np.cov(B))
# idx = np.argsort(latentB)
# idx = idx[::-1]
coeffB = coeffB[:,idx]
latentB = latentB[idx]
coeffB = coeffB[:,range(numpc)]
B = (coeffB.T @ B).T
return A, B
return A
if __name__ == '__main__':
try:
X = np.load('train_X.npy') # trying to read in
Y = np.load('train_Y.npy') # bynary, which is
test = np.load('test.npy') # much faster
print('finish reading files from binary.',
X.shape, Y.shape, test.shape,
file=stderr)
except:
X, Y = read_mnist_csv('train.csv', 42000, with_class=True)
test = read_mnist_csv('test.csv', 28000, with_class=False)
np.save('train_X.npy', X) # saving in np bynary
np.save('train_Y.npy', Y) # for faster loading
np.save('test.npy', test) # next time
print('finish reading files from csv.',
X.shape, Y.shape, test.shape,
file=stderr)
together = np.append(X, test, axis=0)
together = pca(together, numpc=40)
together = np.real(together)
X = together[:len(X)]
test = together[len(X):]
shuffle_ids = np.arange(X.shape[0])
np.random.shuffle(shuffle_ids)
X = X[shuffle_ids]
Y = Y[shuffle_ids]
train_set_size = 10000
train_X = X[:train_set_size]
train_Y = Y[:train_set_size]
test_X = X[train_set_size:]
test_Y = Y[train_set_size:]
model = mlp.MLP([train_X.shape[1], 100, train_Y.shape[1]])
model = mlp.MLP([train_X.shape[1], 20, train_Y.shape[1]])
model.train(train_X, train_Y, threshold=0.005)
# model = mlp.MLP.load('500.mlp')
print('finished training', file=stderr)
kaggle = False # Kaggle submission
if kaggle:
print('ImageId', 'Label', sep=',')
for idx, x_p in enumerate(test, start=1):
f_nets, _ = model.solve(x_p)
o_p = f_nets[-1]
answer = max(range(len(o_p)), key=lambda x: o_p[x])
if idx % 100 == 0:
print('%6.2f%%' % (idx/len(test) * 100), file=stderr)
print(idx, answer, sep=',')
else:
test_X = X[10000:20000]
test_Y = Y[10000:20000]
correct = 0
for idx, x_p, y_p in zip(range(len(test_X)), test_X, test_Y):
f_nets, _ = model.solve(x_p)
o_p = f_nets[-1]
which_max_o = max(range(len(o_p)), key=lambda x: o_p[x])
which_max_e = max(range(len(y_p)), key=lambda x: y_p[x])
if which_max_e == which_max_o:
correct += 1
if idx % 100 == 0:
print('testing: %6.2f%%' % (idx/len(test_X) * 100), file=stderr)
print(file=stderr)
print('Result: ', correct/len(test_X) * 100, '%', sep='', file=stderr)
model.save('%f.mlp' % (correct/len(test_X)))