-
Notifications
You must be signed in to change notification settings - Fork 0
/
simulate_.py
148 lines (123 loc) · 5.84 KB
/
simulate_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import cv2
import numpy as np
from matplotlib import pyplot as plt
import math
def Gassian(size, mean = 0, var = 0):
norm = np.random.randn(*size)
denorm = norm * np.sqrt(var) + mean
return np.uint8(np.round(np.clip(denorm,0,255)))
def Getline(distribution, length):
period = distribution.shape[0]
if length < 100: # if length is too short, lines are Aligned
patch = Gassian((2*period, length), mean=250, var = 3)
begin = 0
end = 1
for i in range(period):
patch[i]=Gassian((1,length), mean=distribution[i,0], var=distribution[i,1])
else: # if length is't too short, lines is't Aligned
patch = Gassian((2*period, length+4*period), mean=250, var = 3)
begin = Gassian((1,1), mean=2.0*period, var=2*period)
# egin = Gassian((1,1), mean=2.0*period, var=0)
begin = np.uint8(np.round(np.clip(begin,0,4*period)))
begin = int(begin[0,0])
end = Gassian((1,1), mean=2.0*period, var=2*period)
# end = Gassian((1,1), mean=2.0*period, var=0)
end = np.uint8(np.round(np.clip(end,1,4*period+1)))
end = int(end[0,0])
real_length = length+4*period-end-begin
for i in range(period):
patch[i,begin:-end]=Gassian((1,real_length), mean=distribution[i,0], var=distribution[i,1])
patch = Attenuation(patch, period=period, distribution=distribution,begin=begin, end=end)
patch = Distortion(patch, begin=begin, end=end)
return np.uint8(np.round(np.clip(patch,0,255)))
def Attenuation(patch, period, distribution, begin, end):
order = int((patch.shape[1]-begin-end)/2)+1
radius = (period-1)/2
canvas = Gassian((patch.shape[0], patch.shape[1]), mean=250, var=3)
patch = np.float32(patch)
canvas = np.float32(canvas)
for i in range(begin, patch.shape[1]-end+1):
for j in range(period):
a = np.abs((1.0-(i-begin)/order)**2)/3
b = np.abs((1.0-j/radius)**2)*1
patch[j,i] += (canvas[j,i]-patch[j,i])*np.sqrt(a+b)/1.5
# patch[j,i] += 0.75*(canvas[j,i]-patch[j,i]) * (np.abs((1.0-(i-begin)/order)**2))**0.5
return np.uint8(np.round(np.clip(patch,0,255)))
def Distortion(patch,begin,end):
height = patch.shape[0]
length = patch.shape[1]
patch = np.float32(patch)
patch_copy = patch.copy()
central = ((length-begin-end)/2+begin) + np.random.randn()*length/15
# central = ((length-begin-end)/2+begin)
if length>100:
radius = length**2/(2*height)
else:
radius = 100**2/(2*height)
for i in range(length):
offset = ((central-i)**2)/(2*radius)
int_offset = int(offset)
decimal_offset = offset-int_offset
for j in range(height):
if j>int_offset:
patch[j,i]=int(decimal_offset*patch_copy[j-1-int_offset,i]+(1-decimal_offset)*patch_copy[j-int_offset,i])
else:
patch[j,i]= np.random.randn() * np.sqrt(3) + 250
return np.uint8(np.round(np.clip(patch,0,255)))
def GetParallel(distribution, height, length, period):
if length<100: # constant length
canvas = Gassian((height+2*period,length), mean=250, var = 3)
else: # variable length
canvas = Gassian((height+2*period,length+4*period), mean=250, var = 3)
distensce = Gassian((1,int(height/period)+1), mean = period, var = period/5)
# distensce = Gassian((1,int(height/period)+1), mean = period, var = 0)
distensce = np.uint8(np.round(np.clip(distensce, period*0.8,period*1.25)))
begin = 0
for i in np.squeeze(distensce).tolist():
newline = Getline(distribution=distribution, length=length)
h,w = newline.shape
# cv2.imshow('line', newline)
# cv2.waitKey(0)
# cv2.imwrite("D:/ECCV2020/simu_patch/Line3.jpg",newline)
if begin < height:
m = np.minimum(canvas[begin:(begin + h),:], newline)
canvas[begin:(begin + h),:] = m
begin += i
else:
break
return canvas[:height,:]
def ChooseDistribution(period, Grayscale):
distribution = np.zeros((period,2))
c = period/2.0
difference = 250-Grayscale
for i in range(distribution.shape[0]):
distribution[i][0] = Grayscale + difference*abs(i-c)/c
distribution[i][1] = np.cos((i-c)/c*(0.5*3.1415929))*difference+difference**2/300
# distribution[i][0] -= np.cos((i-4)/4.0*(0.5*3.1415929))*difference
# distribution[i][1] += np.cos((i-4)/4.0*(0.5*3.1415929))*difference
return distribution
if __name__ == '__main__':
np.random.seed(1500)
canvas = Gassian((400,300), mean=250, var = 3)
# distribution = np.array([[245,31],[238,27],[218,48],[205,33],[214,38],[234,24],[240,42]])
###################################################
###################################################
###################################################
period = 8
Grayscale = 160
H,L = (100,150)
###################################################
###################################################
###################################################
distribution = ChooseDistribution(period=period, Grayscale=Grayscale)
print(distribution)
patch = GetParallel(distribution=distribution, height=H, length=L, period=period)
(h,w) = patch.shape
# patch = GetOffsetParallel(offset=4, distribution=distribution, patch_size=(40,200), period_mean=distribution.shape[0], period_var=1)
# (h,w) = patch.shape
# canvas[400-int(h/2):400-int(h/2)+h,300-int(w/2):300-int(w/2)+w] = patch
# cv2.imshow('Parallel', patch[:, 2*distribution.shape[0]:w-2*distribution.shape[0]])
cv2.imshow('Parallel', patch)
cv2.waitKey(0)
cv2.imwrite("D:/ECCV2020/simu_patch/Parallel4.jpg",patch)
print("done")