-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathvtrace_test.py
276 lines (234 loc) · 10.6 KB
/
vtrace_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for V-trace.
For details and theory see:
"IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures"
by Espeholt, Soyer, Munos et al.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
import vtrace
def _shaped_arange(*shape):
"""Runs np.arange, converts to float and reshapes."""
return np.arange(np.prod(shape), dtype=np.float32).reshape(*shape)
def _softmax(logits):
"""Applies softmax non-linearity on inputs."""
return np.exp(logits) / np.sum(np.exp(logits), axis=-1, keepdims=True)
def _ground_truth_calculation(discounts, log_rhos, rewards, values,
bootstrap_value, clip_rho_threshold,
clip_pg_rho_threshold):
"""Calculates the ground truth for V-trace in Python/Numpy."""
vs = []
seq_len = len(discounts)
rhos = np.exp(log_rhos)
cs = np.minimum(rhos, 1.0)
clipped_rhos = rhos
if clip_rho_threshold:
clipped_rhos = np.minimum(rhos, clip_rho_threshold)
clipped_pg_rhos = rhos
if clip_pg_rho_threshold:
clipped_pg_rhos = np.minimum(rhos, clip_pg_rho_threshold)
# This is a very inefficient way to calculate the V-trace ground truth.
# We calculate it this way because it is close to the mathematical notation of
# V-trace.
# v_s = V(x_s)
# + \sum^{T-1}_{t=s} \gamma^{t-s}
# * \prod_{i=s}^{t-1} c_i
# * \rho_t (r_t + \gamma V(x_{t+1}) - V(x_t))
# Note that when we take the product over c_i, we write `s:t` as the notation
# of the paper is inclusive of the `t-1`, but Python is exclusive.
# Also note that np.prod([]) == 1.
values_t_plus_1 = np.concatenate([values, bootstrap_value[None, :]], axis=0)
for s in range(seq_len):
v_s = np.copy(values[s]) # Very important copy.
for t in range(s, seq_len):
v_s += (
np.prod(discounts[s:t], axis=0) * np.prod(cs[s:t],
axis=0) * clipped_rhos[t] *
(rewards[t] + discounts[t] * values_t_plus_1[t + 1] - values[t]))
vs.append(v_s)
vs = np.stack(vs, axis=0)
pg_advantages = (
clipped_pg_rhos * (rewards + discounts * np.concatenate(
[vs[1:], bootstrap_value[None, :]], axis=0) - values))
return vtrace.VTraceReturns(vs=vs, pg_advantages=pg_advantages)
class LogProbsFromLogitsAndActionsTest(tf.test.TestCase,
parameterized.TestCase):
@parameterized.named_parameters(('Batch1', 1), ('Batch2', 2))
def test_log_probs_from_logits_and_actions(self, batch_size):
"""Tests log_probs_from_logits_and_actions."""
seq_len = 7
num_actions = 3
policy_logits = _shaped_arange(seq_len, batch_size, num_actions) + 10
actions = np.random.randint(
0, num_actions, size=(seq_len, batch_size), dtype=np.int32)
action_log_probs_tensor = vtrace.log_probs_from_logits_and_actions(
policy_logits, actions)
# Ground Truth
# Using broadcasting to create a mask that indexes action logits
action_index_mask = actions[..., None] == np.arange(num_actions)
def index_with_mask(array, mask):
return array[mask].reshape(*array.shape[:-1])
# Note: Normally log(softmax) is not a good idea because it's not
# numerically stable. However, in this test we have well-behaved values.
ground_truth_v = index_with_mask(
np.log(_softmax(policy_logits)), action_index_mask)
with self.test_session() as session:
self.assertAllClose(ground_truth_v, session.run(action_log_probs_tensor))
class VtraceTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(('Batch1', 1), ('Batch5', 5))
def test_vtrace(self, batch_size):
"""Tests V-trace against ground truth data calculated in python."""
seq_len = 5
# Create log_rhos such that rho will span from near-zero to above the
# clipping thresholds. In particular, calculate log_rhos in [-2.5, 2.5),
# so that rho is in approx [0.08, 12.2).
log_rhos = _shaped_arange(seq_len, batch_size) / (batch_size * seq_len)
log_rhos = 5 * (log_rhos - 0.5) # [0.0, 1.0) -> [-2.5, 2.5).
values = {
'log_rhos': log_rhos,
# T, B where B_i: [0.9 / (i+1)] * T
'discounts':
np.array([[0.9 / (b + 1)
for b in range(batch_size)]
for _ in range(seq_len)]),
'rewards':
_shaped_arange(seq_len, batch_size),
'values':
_shaped_arange(seq_len, batch_size) / batch_size,
'bootstrap_value':
_shaped_arange(batch_size) + 1.0,
'clip_rho_threshold':
3.7,
'clip_pg_rho_threshold':
2.2,
}
output = vtrace.from_importance_weights(**values)
with self.test_session() as session:
output_v = session.run(output)
ground_truth_v = _ground_truth_calculation(**values)
for a, b in zip(ground_truth_v, output_v):
self.assertAllClose(a, b)
@parameterized.named_parameters(('Batch1', 1), ('Batch2', 2))
def test_vtrace_from_logits(self, batch_size):
"""Tests V-trace calculated from logits."""
seq_len = 5
num_actions = 3
clip_rho_threshold = None # No clipping.
clip_pg_rho_threshold = None # No clipping.
# Intentionally leaving shapes unspecified to test if V-trace can
# deal with that.
placeholders = {
# T, B, NUM_ACTIONS
'behaviour_policy_logits':
tf.placeholder(dtype=tf.float32, shape=[None, None, None]),
# T, B, NUM_ACTIONS
'target_policy_logits':
tf.placeholder(dtype=tf.float32, shape=[None, None, None]),
'actions':
tf.placeholder(dtype=tf.int32, shape=[None, None]),
'discounts':
tf.placeholder(dtype=tf.float32, shape=[None, None]),
'rewards':
tf.placeholder(dtype=tf.float32, shape=[None, None]),
'values':
tf.placeholder(dtype=tf.float32, shape=[None, None]),
'bootstrap_value':
tf.placeholder(dtype=tf.float32, shape=[None]),
}
from_logits_output = vtrace.from_logits(
clip_rho_threshold=clip_rho_threshold,
clip_pg_rho_threshold=clip_pg_rho_threshold,
**placeholders)
target_log_probs = vtrace.log_probs_from_logits_and_actions(
placeholders['target_policy_logits'], placeholders['actions'])
behaviour_log_probs = vtrace.log_probs_from_logits_and_actions(
placeholders['behaviour_policy_logits'], placeholders['actions'])
log_rhos = target_log_probs - behaviour_log_probs
ground_truth = (log_rhos, behaviour_log_probs, target_log_probs)
values = {
'behaviour_policy_logits':
_shaped_arange(seq_len, batch_size, num_actions),
'target_policy_logits':
_shaped_arange(seq_len, batch_size, num_actions),
'actions':
np.random.randint(0, num_actions - 1, size=(seq_len, batch_size)),
'discounts':
np.array( # T, B where B_i: [0.9 / (i+1)] * T
[[0.9 / (b + 1)
for b in range(batch_size)]
for _ in range(seq_len)]),
'rewards':
_shaped_arange(seq_len, batch_size),
'values':
_shaped_arange(seq_len, batch_size) / batch_size,
'bootstrap_value':
_shaped_arange(batch_size) + 1.0, # B
}
feed_dict = {placeholders[k]: v for k, v in values.items()}
with self.test_session() as session:
from_logits_output_v = session.run(
from_logits_output, feed_dict=feed_dict)
(ground_truth_log_rhos, ground_truth_behaviour_action_log_probs,
ground_truth_target_action_log_probs) = session.run(
ground_truth, feed_dict=feed_dict)
# Calculate V-trace using the ground truth logits.
from_iw = vtrace.from_importance_weights(
log_rhos=ground_truth_log_rhos,
discounts=values['discounts'],
rewards=values['rewards'],
values=values['values'],
bootstrap_value=values['bootstrap_value'],
clip_rho_threshold=clip_rho_threshold,
clip_pg_rho_threshold=clip_pg_rho_threshold)
with self.test_session() as session:
from_iw_v = session.run(from_iw)
self.assertAllClose(from_iw_v.vs, from_logits_output_v.vs)
self.assertAllClose(from_iw_v.pg_advantages,
from_logits_output_v.pg_advantages)
self.assertAllClose(ground_truth_behaviour_action_log_probs,
from_logits_output_v.behaviour_action_log_probs)
self.assertAllClose(ground_truth_target_action_log_probs,
from_logits_output_v.target_action_log_probs)
self.assertAllClose(ground_truth_log_rhos, from_logits_output_v.log_rhos)
def test_higher_rank_inputs_for_importance_weights(self):
"""Checks support for additional dimensions in inputs."""
placeholders = {
'log_rhos': tf.placeholder(dtype=tf.float32, shape=[None, None, 1]),
'discounts': tf.placeholder(dtype=tf.float32, shape=[None, None, 1]),
'rewards': tf.placeholder(dtype=tf.float32, shape=[None, None, 42]),
'values': tf.placeholder(dtype=tf.float32, shape=[None, None, 42]),
'bootstrap_value': tf.placeholder(dtype=tf.float32, shape=[None, 42])
}
output = vtrace.from_importance_weights(**placeholders)
self.assertEqual(output.vs.shape.as_list()[-1], 42)
def test_inconsistent_rank_inputs_for_importance_weights(self):
"""Test one of many possible errors in shape of inputs."""
placeholders = {
'log_rhos': tf.placeholder(dtype=tf.float32, shape=[None, None, 1]),
'discounts': tf.placeholder(dtype=tf.float32, shape=[None, None, 1]),
'rewards': tf.placeholder(dtype=tf.float32, shape=[None, None, 42]),
'values': tf.placeholder(dtype=tf.float32, shape=[None, None, 42]),
# Should be [None, 42].
'bootstrap_value': tf.placeholder(dtype=tf.float32, shape=[None])
}
with self.assertRaisesRegexp(ValueError, 'must have rank 2'):
vtrace.from_importance_weights(**placeholders)
if __name__ == '__main__':
tf.test.main()